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Abstract

Motivation: Enzymatic digestion of proteins before mass spectrometry analysis is a key process in metaproteomic
workflows. Canonical metaproteomic data processing pipelines typically involve matching spectra produced by the
mass spectrometer to a theoretical spectra database, followed by matching the identified peptides back to parent-
proteins. However, the nature of enzymatic digestion produces peptides that can be found in multiple proteins due
to conservation or chance, presenting difficulties with protein and functional assignment.
Results: To combat this challenge, we developed pepFunk, a peptide-centric metaproteomic workflow focused on
the analysis of human gut microbiome samples. Our workflow includes a curated peptide database annotated with
Kyoto Encyclopedia of Genes and Genomes (KEGG) terms and a gene set variation analysis-inspired pathway en-
richment adapted for peptide-level data. Analysis using our peptide-centric workflow is fast and highly correlated to
a protein-centric analysis, and can identify more enriched KEGG pathways than analysis using protein-level data.
Our workflow is open source and available as a web application or source code to be run locally.
Availability and implementation: pepFunk is available online as a web application at https://shiny.imetalab.ca/
pepFunk/ with open-source code available from https://github.com/northomics/pepFunk.
Contact: dfigeys@uottawa.ca
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metaproteomics, the study of proteins from an environmental sample, is
used to examine the dynamics and composition of microbial communities
in complex environments including human and animal microbiomes
(Cheng et al., 2018; Moon et al., 2018), soil (Starke et al., 2019) and
water samples (Mikan et al., 2020). Understanding the microbial dynam-
ics and functionality of the human gut microbiome is particularly of inter-
est due to its association with human disease as observed in immune-
system-associated diseases, such as inflammatory bowel disease (IBD)
(Morgan et al., 2012; Zhang et al., 2018b), asthma (Arrieta et al., 2015)
and multiple sclerosis (Jangi et al., 2016), metabolic disorders, such as
obesity and type-II diabetes (Sonnenburg and Bäckhed, 2016) and cardio-
vascular disease (Tang et al., 2017). Studies have also demonstrated that
the presence of the ‘gut-brain’ axis can mean that gut microbes are cap-
able of influencing, or are at least linked to, one’s mental health, with evi-
dence even suggesting that modulation of microbiota can have
therapeutic effects in anxiety and depression (Dash et al., 2015).

Although the term ‘proteomics’ implies that proteomic data in-
herently consist of protein-level information, an important step in
most proteomic workflows is to enzymatically digest extracted pro-
teins into smaller peptide fragments before mass spectrometry (MS)
sequencing (Hettich et al., 2013). To facilitate the analysis, peptides
are then separated and analyzed, often by liquid chromatography
coupled with tandem MS. Raw spectra produced by MS/MS are
computationally matched with predicted spectra of peptide sequen-
ces by database search. These matched peptides are then assigned to
proteins. However, due to the nature of enzymatic digestion, the
same peptide sequence can belong to multiple proteins, and it is dif-
ficult to determine the correct parent-protein of these redundant
peptides (Nesvizhskii and Aebersold, 2005). Nesvizhskii and
Aebersold (2005) deemed this challenge the Protein Inference
Problem, which is further exacerbated in metaproteomics experi-
ments due to the presence of multiple microbial strains and species
that can include additional redundant peptides due to protein se-
quence conservation. Nonetheless, computational workflows for
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proteomic research typically use proteins identified from peptide
sequences for quantitative and functional enrichment studies al-
though redundant peptides can impede accurate and confident iden-
tification of proteins from MS/MS data.

Ning et al. (2016) describe the uncertainty of peptide-to-protein
assignment as ‘information degeneration’. This information loss
stems from the methods that researchers have previously used to
mitigate the ambiguity of peptide-to-protein assignment. For ex-
ample, the Occam’s razor principle relies on discarding proteins
without unique peptides, and often can only identify protein groups
(Serang and Noble, 2012). Alternatively, Muth et al. (2015) have
introduced the concept of a ‘meta-protein’, where proteins are
grouped by amino acid sequence or shared peptides. Although meth-
ods have been introduced to combat the Protein Inference Problem,
methods for a peptide-centric metaproteomic workflow have also
been implemented to circumvent information loss. Notably, UniPept
is a gene ontology (GO) term-focused functional analysis tool that
was released as both a web application and local software tool
(Gurdeep Singh et al., 2019). UniPept uses a large GO term func-
tional database consisting of tryptic peptides of proteins found in
the UniProt Knowledgebase. However, GO term annotations are
organized in a directed acyclic graph with semantic relationships be-
tween terms, causing challenges for functional enrichment analyses,
such as unclear hierarchies and dependencies (Gaudet and
Dessimoz, 2016). To manage this challenge, Riffle et al. (2018) cre-
ated MetaGOmics, a peptide-centric GO term based enrichment
tool that creates directly acyclic graphs for GO terms associated to
identified peptides. Despite the computational progress, these previ-
ously mentioned tools have made for peptide-centric metaproteomic
workflows, the tools all use complex GO term annotation and are
not specifically created for gut microbiome studies.

In this work, we introduce a novel peptide-centric workflow for
metaproteomics data for gut microbiome experiments. To facilitate
this work, we created a Kyoto Encyclopedia of Genes and Genomes
(KEGG)-to-peptide functional database, a functional enrichment
workflow and an interactive web application companion tool for
gut microbiome metaproteomic studies. We created a peptide-
function database consisting of in silico digested peptides from the
Integrated human gut microbial Gene Catalog (IGC) database. We
reduced the size of our peptide database by focusing on the most em-
pirically identified peptides in raw MS/MS data for improved com-
putational speed. We used annotation from UniProt Reference
Clusters 90 (UniRef90) sequence clusters to functionally annotate
the gut microbiome peptide database with KEGG terms. We created
a peptide-centric functional enrichment workflow by adapting gene
set variation analysis (GSVA) for peptide-level data (Hänzelmann
et al., 2013). We found that the results from our peptide-centric
workflow correlated with results from a protein-centric workflow
suggesting that the peptide workflow is suitable and comparable to
a more canonical approach to metaproteomics data analysis.
Additionally, our peptide-centric workflow was able to identify
more enriched KEGG pathways than when using protein-level data.
Finally, we packaged our peptide-centric data analysis pipeline into
a user-friendly web application intended to be used as a companion
tool to MetaLab and iMetaLab (Cheng et al., 2017; Liao et al.,
2018), and released the source code to allow local data analysis for
experienced computational users.

2 Materials and methods

2.1 KEGG core peptide database construction
We used the IGC protein dataset (https://db.cngb.org/microbiome/
genecatalog/genecatalog_human/; Li et al., 2014) to create our
KEGG-peptide functional database. We first annotated the IGC pro-
tein dataset by searching for sequence identity in UniRef90 sequence
clusters (Suzek et al., 2015). Sequence alignment was computed
using Diamond blastp (Buchfink et al., 2015) and command line
options –sensitive -e 0.1–top 5 -f 6 qseqid qlen sseqid slen evalye
length mident, where –sensitive gave us a search with a higher sensi-
tivity, -e 0.1 allowed for a maximum E-value of 0.1, –top 5

produced a list of the top five hits and -f let us customize the output
file. We considered a single protein match to a cluster sequence in
UniRef90 as the smallest E-value representing the best match for
functional identification. Notably, 99.5% of protein matches have
E-values <0.0001. Each protein in the IGC dataset was then anno-
tated with KEGG terms using the annotation associated to
UniRef90 protein matches. We completed an in silico trypsin diges-
tion of the IGC protein dataset using a Python script (https://github.
com/northomics/bin/blob/master/trypsin.py) that considered diges-
tion at lysine and arginine except if followed by a proline, and up to
two missed enzymatic cleavages. Computed peptides inherited the
KEGG functional annotation of parent-proteins. In the case of re-
dundant peptides, or peptide sequences that are found in multiple
proteins, the union of all identified KEGG annotations for all
parent-proteins were considered (Fig. 1A). In other words, we did
not discard any putative functional annotation in redundant pepti-
des and instead multiple KEGG annotations were accounted for in
functional enrichment analysis by intensity weighting (Fig. 1B).
After in silico trypsin digestion, our IGC database of 9 878 647 pro-
teins consisted of 603 457 781 total peptides and 414 419 478
unique peptide sequences. For computational speed, we reduced this
database size to peptides frequently matched in human gut micro-
biome studies to 469 393 unique peptides that were identified from
500 in house, raw MS/MS files. Of these unique peptides, 224 836
(47.9%) have KEGG annotation. Conversely, the IGC protein data-
base has 2 109 127 (21.4%) proteins with KEGG annotation. The
reduced database is made available as Supplementary File S1.

2.2 Peptide set and protein set variation analysis
We adapted the GSVA method (Hänzelmann et al., 2013) for use
with peptide intensity levels in metaproteomic experiments rather
than gene expression estimation from RNA sequencing or micro-
array experiments. Peptide intensities were corrected by sample-
specific size factors to normalize inter-sample variability. We calcu-
lated size factors using the DESeq2 R package (Love et al., 2014),
which consisted of median ratios of peptide intensities to the geo-
metric mean of each peptide in the entire experiment. Peptide inten-
sities were then divided by their corresponding sample-specific size
factor. We removed peptides with intensities missing in over half the
samples in each tested condition as a preprocessing filtering step for
missing data. We then created ‘peptide sets’ for our adapted GSVA
analysis consisting of peptides annotated in each KEGG pathway for
a total of 229 peptide sets. For our protein-level analysis, we also
created protein sets from protein groups annotated in each KEGG
pathway. Peptides with multiple KEGG annotation terms were
included in all appropriate peptide sets by intensity weighting while
considering the frequency of KEGG term annotation as explained in
Equation (1) and Figure 1B:

ipk ¼ xpðwpkÞ (1)

wpk ¼
npk

np
;

where i ¼ adjusted intensity, x ¼ measured peptide intensity, w ¼
weight adjustment, p ¼ peptide, k ¼ KEGG term and n ¼ number
of KEGG terms.

We completed a peptide set variation analysis using the GSVA R
package (Hänzelmann et al., 2013). We used a Gaussian cumulative
distribution function for kernel estimation of each peptide’s intensity.
To reduce noise, we only considered peptide sets with a minimum size
of 10 peptides. The weighted peptide intensities (wpk) were further
transformed by log2. Briefly, GSVA scores, a type of enrichment
score, were calculated from ranking peptides in each set and calculat-
ing a Kolmogorov–Smirnov-like random walk statistic from these
ranked peptide sets. Significant differences in GSVA scores of peptide
sets between tested conditions were identified using lmFit(), a least
squares linear model, and eBayes(), empirical Bayes moderation, from
the limma R package (Phipson et al., 2016) while considering multiple
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hypothesis testing by adjusting P-values using the Benjamini–
Hochberg procedure (Benjamini and Hochberg, 1995).

We compared the results of the peptide set variation analysis
workflow to that of a similar workflow centered on protein-level in-
tensity data. The methods remained the same, except we used

protein group label-free quantitation (LFQ) intensity values pro-
vided by the MetaLab workflow. The protein LFQ values were also
normalized by log2 transformations and then subjected to the same
workflow as the peptide intensities including weighting of all protein
group intensities with multiple KEGG terms.

A

B

Fig. 1. Illustrated schematic of the peptide database creation and intensity weighting methodology. (A) Peptide database protocol. We first used diamond blastp to align IGC
proteins to the UniRef90 gene cluster database for annotation of IGC proteins with KEGG terms. In parallel, we completed an in silico trypsin digestion of IGC proteins into
tryptic peptides that then inherited KEGG annotations from their parent-proteins. Notably, redundant peptides inherited all possible KEGG annotations. In this example, the
redundant peptide (gray) can be found in three proteins. (B) Intensity weighting of redundant peptides. The intensity of the gray redundant peptide is weighted by our confi-
dence in the peptide’s KEGG annotation. The redundant peptide is part of two proteins annotated with KO1 and one protein annotated with KO2, therefore, we weight the
peptide’s intensity for KO1 and KO2 by 0.66 (2/3) and 0.33 (1/3), respectively. The weighted intensities are then be used in our modified GSVA pipeline where the weighted
intensities are associated to the appropriate peptide set. (Color version of this figure is available at Bioinformatics online.)
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2.3 R shiny app construction
We created pepFunk, an R shiny application for our peptide-centric
functional enrichment workflow. pepFunk was written in the R pro-
gramming language v3.4.4 (R Core Team, 2019) and is dependent
on the R packages: shiny (Chang et al., 2019), shinydashboard
(Chang and Borges Ribeiro, 2018), shinyWidgets (Perrier et al.,
2019), DT (Xie et al., 2019) for application building, rhandsontable
(Owen, 2018), reshape2 (Wickham, 2007), tidyverse, plyr
(Wickham, 2011) for data manipulation, colourpicker (Attali,
2017), tidyverse (Wickham, 2017) and plotly (Sievert, 2018) for cus-
tom plotting, DESeq2 (Love et al., 2014), GSVA (Hänzelmann
et al., 2013) and limma (Ritchie et al., 2015) for data analysis,
ggdendro (de Vries and Ripley, 2016) and dendextend (Galili, 2015)
for dendrogram plotting and LaCroixColoR (Bjork, 2019) for color
palettes. Dataset 1 is provided as sample data within the app, and
was also deposited to the ProteomeXchange Consortium (Deutsch
et al., 2017) via the PRIDE (Perez-Riverol et al., 2019) partner re-
pository with the dataset identifier PXD016388. Our application is
hosted at https://shiny.imetalab.ca/pepFunk/ with source code and a
read me file explaining package and version requirements available
at https://github.com/northomics/pepFunk.

2.4 Datasets
2.4.1 Dataset 1: fecal microbiome treated with a histone deacetylace

inhibitor
We adopted an ex vivo microbiome assay, termed rapid assay of
individual’s microbiome (RapidAIM) (Li et al., 2019) to assess the
direct effects of the histone deacetylace (HDAC) inhibitor suberou-
lanilide hydroxamic acid (SAHA) on a human microbiome. Briefly,
in a RapidAIM assay, a human gut microbiome (fecal) sample was
cultured for 24 h in anaerobic conditions in control conditions with
dimethyl sulfoxide (DMSO) and treatment conditions with a low
(0.125 mg/ml), or high concentration of SAHA (0.25 mg/ml). The
human stool sampling protocol (Protocol # 20160585-01H) was
approved by the Ottawa Health Science Network Research Ethics
Board at the Ottawa Hospital. Proteins were digested with trypsin
(Worthington Biochemical Corp., Lakewood, NJ). The digest was
then desalted and analyzed using an Orbitrap Q-Exactive mass spec-
trometer as described previously (Zhang et al., 2018a). Spectra
search and peptide quantitation were completed using MetaLab
v1.1.1 (Cheng et al., 2017) and a database search of the IGC. The
MS proteomics data have been deposited to the ProteomeXchange
Consortium (Deutsch et al., 2017) via the PRIDE (Perez-Riverol
et al., 2019) partner repository with the dataset identifier
PXD016388. Peptide and protein group output files were used for
the analyses. We removed peptides from the analysis if they were
quantified in <50% of any condition. Of the total detected peptides,
79.5% were found in our core peptide database and 52.0% had at
least one associated KEGG term (Supplementary Fig. S2A).

2.4.2 Dataset 2: fecal microbiome treated with metformin
A human fecal sample (microbiome) stored at $80

%
C was thawed

quickly at 37
%
C and cultured using RapidAIM (Li et al., 2019) for

24 h with 10 mM metformin (MTFM) or DMSO as the control.
Control and treatment samples were cultured in five replicates. The
human stool sampling protocol (Protocol # 20160585-01H) was
approved by the Ottawa Health Science Network Research Ethics
Board at the Ottawa Hospital. Cultured microbiome samples were
subjected to protein extraction and tryptic digestion, and samples
were analyzed using an Orbitrap Q-Exactive and a 90-min gradient
as described previously (Li et al., 2019). Three technical replicates
were run on the Q-Exactive for a single sample (MTFM_3). Spectra
search and peptide quantitation were completed using MetaLab
v1.2.0 (Cheng et al., 2017) using a database search of the IGC. The
MS proteomics data have been deposited to the ProteomeXchange
Consortium (Deutsch et al., 2017) via the PRIDE (Perez-Riverol
et al., 2018) partner repository with the dataset identifier
PXD016427. The median values of both peptide and protein-level
intensities were used for the analyses for the three technical repli-
cates (MTFM_3). We removed peptides from the analysis if they

were quantified in <50% of either condition. Of the total detected
peptides, 84.4% were found in our core peptide database and
62.4% had at least one associated KEGG term (Supplementary Fig.
S2B).

2.4.3 Dataset 3: mucosal-luminal interface aspirates of pediatric

patients with IBD
Raw sequence data from Zhang et al. (2018b), dataset identifier
PXD007819, were downloaded from the ProteomeXchange
Consortium (Deutsch et al., 2017) via the PRIDE (Perez-Riverol
et al., 2018) partner repository. This study used mucosal-luminal
interface (MLI) aspirates obtained from 71 pediatric (<18 years)
patients with IBD. MLI aspirates were collected via colonoscopy at
three intestinal locations: descending colon, ascending colon and the
terminal ileum. For our study, we used a subset of the dataset to
only include samples from the descending colon, totaling 62 samples
[22 control, 22 diagnosed CD and 18 diagnosed ulcerative colitis
(UC)]. Spectra search and peptide quantitation were completed
using MetaLab and a database search of the IGC. We removed pep-
tides from the analysis if they were quantified in <50% of any con-
dition. Of the total detected peptides, 95.3% were found in our core
peptide database and 53.0% had at least one associated KEGG term
(Supplementary Fig. S2C).

3 Results

3.1 Sample group separation is possible using both
peptide- and protein-level data
We first compared the ability principal component analysis (PCA)
from intensity values at the protein- and peptide-levels distinguish
treatment groups. To do so, we applied both protein and peptide-
centric metaproteomic workflows to two fecal microbiome datasets:
Dataset 1, a fecal microbiome treated with two concentrations of
SAHA, Dataset 2, a fecal microbiome treated with MTFM and
Dataset 3, MLI aspirates of patients with IBD. PCA using both pep-
tide and protein group intensities is able to separate the high concen-
tration of SAHA from the control DMSO treatment of Dataset 1
(Supplementary Fig. S1A and D). Clustering of treatments is similar
using peptide and protein-level data analyses. In Dataset 2, PCA can
also very clearly distinguish between a DMSO treated microbiome
from one treated with MTFM using both peptide and protein group
intensities (Supplementary Fig. S1B and E). The control DMSO
treatment samples, however, cluster more tightly when using peptide
intensities. Neither peptide- nor protein-level PCA was able to dis-
tinguish control patients from CD or UC (Supplementary Fig. S1C
and F), which was expected and also identified by Zhang et al.
(2018b).

3.2 KEGG functional enrichment of metaproteomic data
We compared protein- and peptide-centric workflows for KEGG
pathway enrichment using a GSVA framework. Peptide spectra
matches for both workflows were identified through a database
search of the IGC peptide database using MetaLab (Cheng et al.,
2017). Our protein-level analysis considered protein groups that
were identified by sequence similarity using MetaLab (Cheng et al.,
2017) and KEGG annotation for all proteins in each protein group
were considered for functional enrichment.

We computed GSVA scores for all samples in each dataset. To
test if GSVA scores followed the same trend in both workflows, we
completed a correlation analysis of the median GSVA scores of path-
ways found to be significantly enriched at either a peptide- or
protein-level analysis. We found linear agreement of GSVA scores
between using protein- and peptide-level data sources with
Pearson’s correlation coefficients of 0.82, 0.85 and 0.69 for
Datasets 1, 2 and 3, respectively (Fig. 2).

Using Dataset 1, we were able to complete GSVA on 74 and 91
protein and peptide sets, respectively. After protein and peptide set
GSVA score ranking, a linear model in combination with an
Empirical Bayes approach, was used to identify differentially
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enriched KEGG pathways in each of the treatment conditions (high
and low SAHA) compared to a control. Using the protein-centric
workflow on Dataset 1, we identified two consistent and significant-
ly enriched KEGG pathways when comparing control DMSO treat-
ment to both concentrations of SAHA [selenocompound
metabolism (PATH: KO00450) and biosynthesis of ansamycins
(PATH: KO01051)] (Fig. 3). By only comparing control DMSO
conditions to high concentrations of SAHA treated microbiomes, we
identified four additional enriched KEGG pathways.

The peptide-level analysis led us to identify 12 KEGG pathways
as significantly enriched in samples treated with either low or high
concentrations of SAHA (Fig. 3). Thiamin metabolism was the sole
pathway that was only significantly enriched in samples treated with
a low concentration of SAHA, while nine other KEGG pathways,
such as glycerolipid metabolism and selenocompound metabolism,
were significantly altered after treatment with high levels of SAHA.

Five of the same pathways were identified as significant by both pep-
tide- and protein-centric approaches; however, the peptide-centric
approach was able to identify more significantly enriched KEGG
pathways than the protein-centric method (Supplementary Fig. S3).
Notably, significantly enriched KEGG pathways identified by the
peptide-centric workflow were enriched in the same direction in the
protein-centric workflow in both datasets (Fig. 3).

There was adequate detection of protein groups for GSVA ana-
lysis on 82 KEGG pathway protein sets. We identified 30 significant
differentially enriched KEGG pathways in fecal microbiomes cul-
tured with MTFM. Conversely, we were able to complete GSVA on
103 peptide sets using the peptide-centric approach, of which 47
were significantly enriched. Of the significantly enriched KEGG
pathways, 24 were identified by both peptide- and protein-centric
approaches (Supplementary Fig. S3C).

Because Dataset 3 was composed of gut microbiome data from
63 individual intra-condition variability between individuals was
high (Fig. 5 and Supplementary Fig. S1C and F). Nonetheless, there
was enough protein group quantitation for GSVA analysis on 101
and 98 pathway gene-sets using protein- and peptide-level data, re-
spectively. In the peptide-level analysis, seven KEGG pathways were
identified as significantly altered compared to control in CD micro-
biomes and five pathways in UC microbiomes (Fig. 5). Protein-level
analysis identified slightly more or a similar number of altered
KEGG pathways, with 11 differential pathways in CD microbiomes
and 7 in UC samples (Fig. 5).

3.3 R shiny app
We created a web-based peptide-centric workflow made available as
a companion tool to MetaLab (Cheng et al., 2017) and iMetaLab
(Liao et al., 2018). Our application, pepFunk, accepts input files as
MaxQuant peptide.txt files or user formatted files that include pep-
tide sequence and intensity values. In addition, our application
allows users to upload their own custom peptide-to-KEGG annota-
tion file to extend the usability of this workflow to any proteomic
experiment. The application performs the entire workflow and
allows for the user to visualize data as a PCA biplot, a hierarchical
dendrogram and two types of GSVA score heatplots. Users can also
download analyzed data to create their own customized figures. The
app is available at https://shiny.imetalab.ca/pepFunk with source
code found at https://github.com/northomics/pepFunk. Dataset 1
has been provided as sample data.

4 Discussion

Functional analysis of metaproteomic data can be challenging.
Database choice can have effects on the quality of results (Tanca
et al., 2016), redundant peptides can lead to ambiguously identified
proteins (Ning et al., 2016) and current methods of protein-level
analysis can lead to a loss of information. Typically, protein-centric
workflows are used and can be considered analogous to a transcrip-
tomic workflow, where sequenced cDNA reads are mapped to gen-
omic locations and analyses are completed on estimated transcript
expression values. Recently, metatranscriptomics has moved toward
functional annotation at cDNA read level which does not necessitate
assembly or read mapping to genomic locations (Ugarte et al.,
2018). However, instead of enzymatic digestion as seen in metapro-
teomics, fragmentation of cDNA for metatranscriptomic sample
preparation can be performed by physical methods, such as sonic-
ation (Marine et al., 2011). The randomness of sonication typically
leads to cDNA reads that map to unique locations in reference
genomes, increasing the confidence of functional assignment.

In metaproteomics, the Protein Inference Problem, describing the
challenges of peptide-to-protein assignment, can be even more chal-
lenging when considering the complexity of the microbiome.
Because metaproteomic analyses can identify more proteins that
share the same peptide sequences through the inclusion of multiple
microbial strains and species, protein group-level analyses have been
used to analyze proteins clustered into groups by sequence similar-
ity. However, assigning peptides to protein groups leads to data loss
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Fig. 2. Correlation of significant peptide-centric and protein-centric GSVA scores
calculated in all three test datasets. Median GSVA scores at the condition level were
used for the analysis. A linear regression line is plotted in yellow with a gray ribbon
representing a 95% confidence interval. (A) Dataset 1, (B) Dataset 2 and (C)
Dataset 3
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where researchers can lose statistical power and potentially import-
ant functional information of their microbial community samples
(e.g. Figs 3–5). To combat the issues that can arise from protein
group pipelines, we have created a peptide-centric workflow. By
analyzing metaproteomic data at the peptide level, we are able to
identify similar enriched KEGG pathways as analysis at the protein
group level. Furthermore, we can often identify more enriched
KEGG pathways at the peptide level compared to the protein level
because we retain more information (e.g. 12 versus 6 in Dataset 1
and 47 versus 31 in Dataset 2) (Figs 3 and 4 and Supplementary Fig.
S3). Our peptide-centric workflow is unique as it uses a weighted in-
tensity for functional assignment that is proportional to our confi-
dence in annotated KEGG terms. In addition, our database is small
and reduces computational resources required for a full functional
database search.

To confirm the appropriateness of our approach, we looked at
the biological relevance of the enriched KEGG pathways in our
peptide-centric results. For Dataset 1, a microbiome treated with
SAHA, an HDAC inhibitor, we looked at the cited functional roles
of acetylation in bacteria. Acetylation is a reversible post-
translational modification most well known for being essential to
gene regulation. Acetylation can epigenetically alter expression by
reducing the interaction between histones and DNA making DNA
more accessible to transcriptional machinery (Sterner and Berger,
2000). Casta~no-Cerezo et al. (2014) used cobB and patZ knockout
mutants (a deacetylace and an acetyltransferase) in Escherichia coli
to study how acetylation can affect the bacterial species. We
expected to see similar functional results in our study to that by
Casta~no-Cerezo et al. (2014), particularly the results of the cobB
knockout E.coli. Casta~no-Cerezo et al. (2014) identified that 64%
of acetylated proteins were associated to metabolism. Similarly,
after SAHA treatment, both peptide- and protein-level analyses were
able to identify alterations in expression to many pathways associ-
ated to metabolism, such as increases tyrosine (PATH: ko00350),
selanocompound (PATH: KO00450) metabolism, and decreases in
butanotate (PATH: KO00650), phenylalanine (PATH: KO00360),
and benzoate (PATH: KO00362) metabolism (Fig. 3). Protein-level
analysis was unable to identify the expression modulations in six of
the seven altered KEGG pathways associated to metabolism.
Casta~no-Cerezo et al. (2014) also demonstrated that acetate metab-
olism itself is affected by acetylation through acetyl-CoA generation
by acetyl-CoA synthase (ACS). For example, CobB was shown to
preferentially deacetylate ACS, increasing its activity. The cobB mu-
tant displayed reduced ACS activity, thus suggesting a reduction in
acetyl-CoA generation. Using the peptide-centric analysis, we identi-
fied a reduction in both fatty acid degradation (PATH: KO00071)
and butanoate metabolism (PATH: KO00362) pathways (Fig. 3),
both of which result in acetyl-CoA. Reduced acetyl-CoA by HDAC
inhibition may also be decreasing acetate metabolism. Neither of
these pathways was identified by our protein-level analyses.

However, our peptide-level analysis identified a reduction in cell
motility when gut microbes were treated with SAHA, the opposite
finding of Casta~no-Cerezo et al. (2014).

MTFM, a drug, widely used in the treatment of type-II diabetes,
has previously been shown to alter gut microbiome taxonomic com-
position and functionality (De La Cuesta-Zuluaga et al., 2017; Li
et al., 2019; Ma et al., 2018). In our study, both peptide- and
protein-level identified MTFM-induced alterations to the same path-
ways as other studies. For example, we identified an increase in fatty
acid biosynthesis (PATH: KO00061) (Li et al., 2019) and tRNA bio-
synthesis (BR: KO03016) (Ma et al., 2018). However, protein-level
analysis could not identify other key pathways altered by MTFM
treatment, such as a decrease in fructose and mannose metabolism
(PATH: KO00051) (Li et al., 2019). MTFM has also been shown to
reduce folate metabolism (Cabreiro et al., 2013), thus lower ‘one
carbon pool by folate’ GSVA scores computed using both peptide
and protein data of MTFM-treated samples are expected. However,
peptide-level analysis identified a significant reduction in peptide in-
tensity associated to glycolysis/gluconeogenesis in our MTFM-
treated samples, the inverse of the findings by Li et al. (2019). This
finding may be due to an abundance of proteolytic bacteria in this
sample, or to the comparison between our human samples to the
mouse samples from Li et al. (2019).

The gut microbiome is thought to play an important role in the
biogenesis of both CD and UC. Interestingly, the gut microbiota of
patients with IBD are known to be highly variable over time and can
shift to a temporary ‘healthy’ state (Willing et al., 2009), which may
lead to the difficulty of distinguishing IBD from controls using both
protein- and peptide-level analysis. However, both protein- and
peptide-level analysis identified pathways that were up- or down-
regulated in IBD compared to control individuals. Overall, both
peptide- and protein-centric analyses revealed an average increase in
oxidative phosphorylation (PATH: KO00190) in patients with CD
and UC (Fig. 5). This corroborates with the study by Zhang et al.
(2018b), which identified higher expression of proteins associated
with DNA damage due to oxidative stress in the gut microbiota of
IBD patients. This may also explain the down-regulation of genes
associated with chromosome and associated proteins (BR:
KO03036) identified in CD patients using peptide-level data. By
using our peptide-centric approach, we also identified taurine and
hypotaurine metabolism (PATH: KO00430), metabolites known to
have antioxidant activity, as being significantly up-regulated in UC
compared to control, which was not revealed by protein-level ana-
lysis. Similarly, using metabolomics, Kolho et al. (2017) reported
that fecal taurine levels were significantly correlated with inflamma-
tion in pediatric patients with UC. Our peptide-level results, to-
gether with the above-mentioned metabolomic findings in pediatric
UC patients, may suggest new mechanisms of host-microbiome
interactions in response to the elevated oxidative stress in the gut
lumen during the onset of UC.
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Currently, the vast majority of gut microbiome studies focus on
using genomic sequencing to identify microorganisms. This type of
meta‘-omics’ is useful at identifying the composition of a microbial
community or its corresponding functional potential using a shotgun
metagenomics approach (Halfvarson et al., 2017). However, metage-
nomics cannot identify if genes are expressed and functionally active.
Identifying the functionality of a microbiome sample is essential be-
cause multiple taxa can have redundant functions, and it is possible
that a microbiome persists functionally even when taxa composition
is altered (Blakeley-Ruiz et al., 2019). As such, the emerging field of
metaproteomics instead offers a functional snapshot of microbiome
by identifying and quantifying translated proteins. Recently, multi-
omic studies have shown that taxonomic variation, identified through
metagenomics, may not always be associated with overall
metaproteomic-identified functional changes in microbiome studies
(Blakeley-Ruiz et al., 2019; Mikan et al., 2020). For example,
Blakeley-Ruiz et al. (2019) identified compositional taxonomic
changes in the microbiomes of patients with IBD yet persistent meta-
bolic functionality both within and between patients. While it is

accepted that the taxonomic composition and abundance in gut
microbiomes are variable between individuals (Yatsunenko et al.,
2012), it is possible that redundancy in microbe functions result in an
invariable metabolic landscape between individuals. Thus, if taxo-
nomic changes do not always lead to functional shifts, metaproteomic
studies should also consider taxa-independent functional analyses of
samples, a focus of our peptide-centric workflow. Additionally,
peptide-centric taxonomic analysis of metaproteomic data is already
implemented by MetaLab (Cheng et al., 2017), therefore, our peptide
functional analysis completes the data analysis workflow and demon-
strates the merit of working toward completely peptide-centric meta-
proteomic data analysis in gut microbiome studies.

GSVA, our functional analysis method of choice, can be used in
a condition-independent manner in addition to comparing between
control and treatment samples (Hänzelmann et al., 2013). A
condition-independent type of analysis is useful for researchers using
functional pathways for exploratory analysis or for observing path-
ways that may be highly or lowly expressed in any given sample.
Hänzelmann et al. (2013) also demonstrated that GSVA analysis has
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a higher degree of sensitivity than other gene set enrichment techni-
ques, such as ssGSEA and PLAGE, while simultaneously maintaining
a low type-I error rate of &0.05. While differential protein expression
analysis can be used to study metaproteomic data (Hamann et al.,
2016), differential expression analysis can only identify differences of
expression of individual proteins. Our implementation of GSVA gives
sample- or experiment-wide interpretable results associated to KEGG
pathways with a functional database specific to human gut micro-
biome studies. Currently, there also exists PSEA-Quant, which is a
protein-centric gene set enrichment tool capable of performing both
condition dependent and independent analyses, that uses protein set
enrichment analysis, a method similar to our study (Lavallée-Adam
et al., 2014, 2015; Lavallée-Adam and Yates, 2016). However PSEA-
Quant, uses protein-level data from proteomic studies, and is not spe-
cific to human gut microbiome experiments.

A limitation for peptide-centric approaches to functional enrich-
ment analysis is the potential for functional over-representation of
large proteins. We adapted our workflow from a classic GSVA ana-
lysis in attempt to reduce the negative impact of this limitation.
Specifically, we used all possible KEGG annotations of each peptide
and weighting peptide intensities accordingly. Because it is currently
not always possible to know the parent-protein of each peptide, we
believe our approach is appropriate for mitigating the possible chal-
lenges arising from peptide-level analysis. In addition, it is possible
that our core database may be limiting the functional enrichment
strategies we implemented in pepFunk. While many of the peptides
identified by MS have potential KEGG terms that were not used in
our analyses, these peptides represent a small portion of the total
peptides identified in our analysis (Supplementary Fig. S2D–F). To
address this concern, the R shiny app accepts a custom peptide-to-
KEGG database allowing researchers to extend the microbiome-
focused functionality of our core functional database to any type of
metaproteomic experiment. The implementation of custom func-
tional databases can now allow a user to use the most appropriate
database version for their data. This includes the ability to use an
algorithmically-made database if wanted. This type of database,
however, is beyond the scope of this project as this tool was made
with the gut microbiome metaproteomic community in mind.

As the field of metaproteomics grows, so does the need for accur-
ate, fast and user-friendly tools for data analysis. Current protein
focused functional enrichment workflows struggle with data loss
stemming from assigning redundant peptides to proteins or protein
groups. To combat this challenge, we created and implemented
pepFunk, a peptide-centric functional enrichment workflow and
accompanying R shiny tool for accurate and customizable data ana-
lysis. The current version includes a custom KEGG to human gut

microbiome peptide functional database, but more experienced users
can use their own annotated peptide database. As Ning et al. (2016)
proposed, we have developed a workflow that directly analyses pep-
tide intensities and is able to identify enriched KEGG pathways while
maintaining the statistical validity of a protein-centric approach.
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