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Abstract
Long non-protein coding RNAs (lncRNAs) represent a diverse and enigmatic classification of
RNA. With roles associated with development and stress responses, these non-coding gene reg-
ulators are essential, and yet remain understudied in plants. Thus far, of just over 430 exper-
imentally validated lncRNAs, only 13 are derived from plant systems and many of which do
not meet the classic criteria of the RNA class. Without a solid definition of what makes a
lncRNA, and few empirically validated transcripts, methods currently available for prediction
fall short. To address this deficiency in lncRNA research, we constructed and applied a machine
learning-based lncRNA prediction protocol that does not impose predefined rules, and utilises
only experimentally confirmed lncRNAs in its training datasets.

Through model evaluation, we found that our novel lncRNA prediction tool had an estimated
accuracy of over 96%. In a study that predicted lncRNAs from transcriptomes of evolutionary
diverse plant species, we determined that molecular features of lncRNAs display different phylo-
genetic signal patterns compared to protein-coding genes. Additionally, our analyses suggested
that stress-resistant species express fewer lncRNAs than more stress sensitive species. To ex-
pand on these results, we used the prediction tool in concert with a transcriptomic study of two
natural accessions of the drought tolerant species Eutrema salsugineum. Previously reported to
show little physiological differences in a first drought, but differ significantly in a second, we
instead demonstrated that the two ecotypes displayed vastly different transcriptomic responses,
including the expression of lncRNAs, to a first and second drought treatment. In conclusion,
the prediction tool can be applied to studies to further our knowledge of lncRNA evolution and
as an additional tool in classic transcriptomic studies. The suggested importance of lncRNAs in
drought resistance, and evidence of expression in two natural E. salsugineum accessions, merits
further studies on the molecular and evolutionary mechanisms of these putatively regulatory
transcripts.
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1.1 What is a long non-protein coding RNA?

Transcription of H19, the first identified eukaryotic long non-protein coding RNA (lncRNA),
was observed in 1990 (Brannan et al. 1990). Without formal functional characterization, H19
was identified to co-express with its neighbouring protein coding gene, insulin-like growth factor
(IGF2 ), during embryogenesis suggesting a connection to development. While reminiscent of a
protein-coding gene, H19 was a unique locus that did not associate with ribosomes, but instead
contained multiple open reading frames (ORFs) that remained untranslated (Brannan et al.
1990). Like a functional protein-coding mRNA, H19 was transcribed by RNA polymerase II,
post-transcriptionally modified by splicing and polyadenylation, and found to be conserved within
human, mice and chicken genomes. In the end, the maternally imprinted locus H19 (Bartolomei
et al. 1991), became the first representative of a novel class of mRNA-like non-protein coding
transcripts, which would later be referred to as lncRNAs.

Functioning as gene regulators, lncRNAs are now more generally defined as transcripts longer
than 200nt with a lack of protein coding ability (Derrien et al. 2012). Like H19, lncRNAs are
most often transcribed by RNA polymerase II, spliced and post-transcriptionally modified with a
5′ cap and 3′ poly-A tail (Derrien et al. 2012). However this lncRNA definition is rather fluid as
there exists putative lncRNAs that do not meet the required 200nt threshold (Wang et al. 2005),
encode small translated ORFs (Lauressergues et al. 2015), or are not always polyadenylated
having been identified using a combination of poly(A)- RNASeq and total RNASeq (Di et al.
2014). LncRNAs act as tight gene expression regulators and are typically expressed in a low,
condition- and tissue-dependent manner (Derrien et al. 2012). The characteristic low abundance
and specific expression patterns of lncRNAs has led to difficulties in lncRNA identification.
Furthermore, when lncRNA expression is detected, post-transcriptional modifications can make
the non-coding transcripts appear indistinguishable from protein coding mRNAs.

Extensive transcription of lncRNAs in mammalian genomes was first described by the Func-
tional ANnoTation Of the Mammalian genome (FANTOM) consortium and Rikagaku Kenkyusho
(RIKEN) Institute (Okazaki et al. 2002; Carninci et al. 2005) who identified tens of thousands of
transcribed non-protein coding loci. Using cap-analysis gene expression (CAGE) technology, the
ENCyclopedia Of DNA Elements (ENCODE) Project aimed to further the research started by
FANTOM and RIKEN by continued identification of DNA elements in the human genome with
goals to eventually characterise all transcribed loci (The ENCODE Project Consortium 2012).
During this expansion, The ENCODE Project Consortium (2012) identified that while 80% of the
human genome is actively transcribed, only 3% of the genome accounts for protein coding genes.
This discovery suggested that non-protein coding genes were 24 times more abundant in the
human genome compared to protein coding genes, inciting a movement towards understanding
non-protein coding RNA (ncRNA) functionality.
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1.2 The fast evolution and fuzzy conservation of lncRNAs

Functionality of non-translated loci has been disputed, and ncRNAs being more abundantly tran-
scribed compared to protein-coding loci does not necessarily imply that all ncRNAs have func-
tion. Some have argued that ncRNA, particularly lncRNAs, represent “transcriptional noise”, or
“non-functional transcription” (Hüttenhofer et al. 2005). For example, nucleotide and amino acid
sequence similarity is often used to infer homology and to identify putative function of protein-
coding genes (Pearson 2013). LncRNAs, however, do not display the same patterns of sequence
or structural similarity observed in protein-coding genes (Nelson et al. 2016; Rivas et al. 2017).
Instead, lncRNA conservation, if existing, is typically characterized by synteny or molecular
function (Diederichs 2014). Expressed at low levels and demonstrating little sequence conserva-
tion even between closely related species (Derrien et al. 2012), one could argue that lncRNAs
are the product of leaky transcription by a non specific RNA polymerase (Kung et al. 2013).
Ponjavic et al. (2007), however, have identified trends in mouse lncRNAs that imply purifying
selection and indicate functionality rather than transcriptional noise. For example, while mouse
lncRNAs display a higher rate of insertions, deletions and substitutions than in protein-coding
genes, the rate is lower than what is observed in purely intergenic regions. Similarly, Hangauer
et al. (2013) describe five fold more trait-associated single nucleotide polymorphisms (SNPs) in
humans located in lncRNAs than non-transcribed regions and suggest that the enrichment of
SNPs in lncRNAs implies an influence on phenotypes and diseases in humans. More recently,
Nelson et al. (2016) observed a similar trend in lncRNAs predicted in multiple plant species,
where lncRNAs showed more sequence identity than intergenic loci.

Sequence similarity of lncRNAs between species may be inconsistent, but lncRNAs can often
instead display syntenic conservation. For example, Mohammadin et al. (2015) identified that
a subset of Brassicaceae lncRNAs that appear to be species-specific at nucleotide sequence level
were positionally conserved by proximity to nearest protein-coding genes. Similarly, Hezroni
et al. (2015) identified lncRNAs that display synteny with human lncRNAs in other animal
species. Recently, Amaral et al. (2018) confirmed that syntenic lncRNAs have similar functions in
many mammalian species and found evidence of positionally conserved lncRNAs that associated
with conserved promoter regions. These syntenic lncRNAs also display conserved tissue-specific
expression profiles between humans and mice, and a subset of the transcripts contain conserved
secondary structures that associate with promoters. In total, Amaral et al. (2018) identified
764 of these conserved lncRNAs and have named this subclass of lncRNAs as topological anchor
point RNAs (tapRNAs). This suggests that while lncRNAs may lack conservation in nucleotide
sequence, other molecular traits, such as expression patterns or promoter sequences, may display
evolutionarily conserved patterns. Additionally, the lack of detectable conservation in lncRNAs
may merely be a result of lncRNA research infancy. Specifically, researchers may not have
identified enough functional lncRNAs to detect conservation, or there may be subclasses of
lncRNAs yet to be identified that display conserved molecular traits.
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When considering lncRNAs as a whole, genome position is not the only molecular trait known
to exhibit conservation in lncRNAs. Haerty and Ponting (2015) provide evidence of selection on
exonic splicing enhancers and GC content of tested animal lncRNAs. Haerty and Ponting (2015)
discuss that selection on nucleotide composition related traits may indicate conserved functional-
ity, and in particular, selection on GC content may play a role in secondary structure conservation
of RNA molecules. However, lncRNA structural conservation remains controversial. Rivas et al.
(2017) found little evidence for structural conservation even in sequence-conserved lncRNAs such
as X-inactive specific transcript (Xist) and HOX transcript anitisense RNA (HOTAIR), while a
recent preprint manuscript by Tavares et al. (2018) shows contradicting conclusions found using
different parameters in an RNA structure prediction program, R-scape. As such, conservation
of lncRNAs is complex, and the evolutionary relationships of plant lncRNA molecular traits has
yet to be fully explored.

Overall, lncRNAs display evidence of fast evolution of which the mechanisms are still unclear
and under investigation (Pang et al. 2006). Nevertheless, select lncRNAs have been shown to
evolve de novo from transposable elements (TEs), their molecular progenitors (Kapusta et al.
2013). LncRNA evolution from TEs led to the development of the Repeat Insertion Domains
of LncRNAs (RIDL) hypothesis to explain and predict lncRNA function. The RIDL hypothesis
suggests that it is the ancient functions of the TE-functional domain sequences in lncRNA that
allow “newly evolved” lncRNAs to be functional. For example, TEs can provide their lncRNA
descendants with DNA binding domains (Johnson and Guigo 2014).

TE-directed lncRNA evolution is not the only hypothesis surrounding how lncRNAs develop.
Protein coding genes often evolve through gene duplication which is evident through the iden-
tification of gene families (Zhang 2003). This process can also give rise to functional ncRNA
(Romito and Rougeulle 2011). An interesting example of pseudogenization through gene du-
plication involves the eutherian X chromosome inactivation and the lncRNA Xist (Romito and
Rougeulle 2011). The X-inactivation center (Xic) is an area on the X chromosome in animals
with X and Y sex chromosomes and is essential in X chromosome dosage compensation. The
dosage compensation process occurs through X chromosome inactivation in XX females to pre-
vent excessive expression of both inherited X chromosomes. Genes located in the Xic, including
Xist, are not homologous in all animals, and inconsistent conservation of the Xic may indicate
that many genes in this location are pseudogenes. Interestingly, Xist shares the most sequence
homology with a protein-coding gene in chicken Ligand of numb-protein X 3 (Lnx3 ). Mutations
and transposon sequence contributions consequently led to the loss of protein coding ability, and
the evolution of the now essential lncRNA, Xist.
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1.3 LncRNAs can regulate all levels of gene expression

In a review on lncRNA classifications, St. Laurent et al. (2015) curated over 50 overlapping
classes of lncRNAs from the literature, confirming the complexity and fluidity of lncRNA defini-
tions, conservation and evolution. The classifications range from descriptors of genomic location,
to length of transcript, to molecular function. The review alerts researchers to the problems
that stem from a lack of clear, consensus-driven lncRNA subclasses, and the need to update
the definition of the RNA class. Due to the lack of recognized functional classifications, lncR-
NAs are typically described by their location to the nearest protein coding gene as: intergenic,
intronic, sense, bidirectional antisense, promoter associated, upstream and enhancer-contained
RNA (Wang and Cheksnova 2017). However, these classifications offer little insight on the molec-
ular mechanisms of the transcript which can vary greatly and affect gene expression at levels of
transcription or translation. LncRNAs do not have a single molecular function and their cellular
localization depends on the specific function of the transcript. In this section, I describe the
most broadly recognized molecular roles for functionally characterized lncRNAs.

1.3.1 Natural antisense transcripts

A natural antisense transcript (NAT) is a locus that is transcribed from the opposite strand of a
sense gene. Sense-antisense NAT pairs are two genes that overlap at least partly and are located
on opposite DNA strands. In this particular arrangement, the antisense partner specifically
regulates its sense-overlapping gene. Typically, NATs regulate their sense-partner gene in cis
although expression levels of the NAT are on average three times lower than sense expression
levels (Zinad et al. 2017). NATs can also regulate distant genes in trans, for example when the
NAT is a small ncRNA precursor. Katayama et al. (2005) estimated that just over 70% of all
human transcriptional units show evidence of bidirectional transcription, suggesting that NATs
are not a rare event and may have essential functionality.

NATs have been associated with abiotic stress responses in plants (Borsani et al. 2005; Xu
et al. 2017a). Because NATs are so pervasive in both animals and plants, Yin et al. (2007)
created the first NAT database, antiCODE, to help further research on this gene class. Yin et al.
(2007) curated sense-antisense pairs from both animal and plant sources classifying gene partners
as protein-coding or ncRNAs. antiCODE contributed to natural antisense transcript lncRNAs
(NAT lncRNAs) identification across kingdoms and helped focus future NAT lncRNAs research.

NAT lncRNAs are known to regulate the expression of their target genes in two ways: con-
cordant (induction of sense transcript) and discordant (downregulation of sense transcript) reg-
ulation (Faghihi and Wahlestedt 2009). Mirroring the de novo evolution of many lncRNAs,
transcription of NATs is often activated by the insertion of TEs and TE-associated promoters at
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the 3′ region of the sense-partner (Conley et al. 2008). Interestingly, NATs also seem to regu-
late the insertion of TEs and other mobile genetic elements, suggesting roles in genome stability
(Zinad et al. 2017).

As alluded to above, NAT lncRNAs do not have a single mode of action and are classified
by how gene pairs overlap, and not molecular function. Typically, NATs are referred to as
“head-to-head” where gene pairs have overlapping 5′ regions, “tail-to-tail” where gene pairs have
overlapping 3′ regions, and “full overlap” where one locus completely overlaps its pair (Latge
et al. 2018). NAT lncRNAs have been implicated in transcriptional interference by promoter
competition, RNA polymerase collision, promoter occlusion or RNA polymerase dislodgement.
However, NAT lncRNAs typically regulate gene expression by chromatin modification, as ob-
served in two well-studied mammalian NAT lncRNAs, Xist and HOTAIR (Monfort et al. 2015;
Wu et al. 2013).

1.3.2 lncRNA-directed gene regulation via chromatin modification

Inside the nucleus, lncRNAs are able to regulate transcription not only by transcriptional inter-
ference, but also by DNA methylation, chromatin remodelling and histone modifications (Akhade
et al. 2017) The two most well-studied examples of lncRNAs regulating methylation of their tar-
get genes are Xist and HOTAIR. Xist, an extremely long lncRNA, is a 17kb transcript encoded
by a gene on the X chromosome and, as mentioned previously, is involved in X chromosome
inactivation. Xist is localised to the nucleus and is constitutively expressed in XX females in
order to coat the inactive chromosome and prevent transcription (Clemson et al. 1996).

H3K27me3 methylation, activated by Polycomb Repressive Complex 2 (PRC2), has been
proposed as a key component to X inactivation (Monfort et al. 2015). The potential importance
of H3K27me3 methylation led researchers to suggest that Xist interacts, directly or indirectly,
with PRC2 to induce methylation and consequently repress the expression of a copy of the
X chromosome. However, although first identified in 1992 (Brown et al. 1992) and described
as “the best characterised lncRNA to date” (Pintacuda et al. 2017), the exact mechanisms
of X inactivation by methylation and Xist remain unclear. A review by Rocha and Heard
(2017) discusses spen family transcriptional repressor (SPEN), RNA binding motif protein 15
(RBM15) and WT1 associated protein (WTAP), and heterogeneous nuclear ribonucleoprotein
U (HNRNPU) and lamin B receptor (LBR) as putative interaction partners contributing to
methylation of the inactive X chromosome, but the exact mechanism of action remains unknown.

HOTAIR, also involved in methylation of its target gene HoxD, directly recruits the PRC2
complex (Wu et al. 2013). Although the HOTAIR transcript is 2.2kb long, it is merely an
89-mer domain of HOTAIR that interacts with a heterodimer of two PRC2 subunits initiating
methylation (Wu et al. 2013). As reviewed by Bhan and Mandal (2015), over-expression and
dysregulation of HOTAIR is known to have negative health effects on humans, particularly
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involvement in a variety of cancers. Similarly, lncRNAs from plant systems are also involved
in chromatin modification for gene regulation. For example, multiple lncRNAs located in the
FLOWERING LOCUS C (FLC ) locus control flowering time are mediated by cold temperature
and function by indirect interaction with PRC2 (discussed in detail in Section 1.6).

1.3.3 LncRNAs as endogenous miRNA “sponges”

LncRNAs do not always localise to the nucleus. Those that are functional in the cytoplasm
can alter gene expression after their target gene has been transcribed via post-transcriptional
regulation. For example, endogenous microRNA (miRNA) sponges are a type of lncRNA that
can regulate their target gene indirectly. An Arabidopsis thaliana lncRNA, Induced by Phosphate
Starvation 1 (IPS1 ), is a natural miRNA target decoy (Franco-Zorrilla et al. 2007). IPS1 contains
a conserved 23nt region that is complementary to its target miRNA, miR-399. IPS1 functions
by binding to miR-399 and preventing the miRNA from acting on its target gene, PHO2, which
in turn regulates the expression of phosphate transporters. Although miRNAs in plant systems
typically silence gene expression by cleaving its mRNA target gene, IPS1 is uncleavable by virtue
of an internal mismatch between IPS1 and its target. Thus, IPS1 continuously binds miR-399
preventing the normal gene silencing activity by the miRNA transcript (Franco-Zorrilla et al.
2007).

1.3.4 Translation of small ORFs in lncRNAs

While extensive translation of lncRNAs is controversial (Banfai et al. 2012), miRNA primary
transcripts have been observed to encode small cis-regulatory peptides (Lauressergues et al.
2015) invalidating their “non-coding” namesake. miRNA-encoded peptides (miPEPs) translated
in vivo were found to up-regulate the transcription of their respective miRNAs. Synthetically
made peptides had similar regulatory and physiological effects as endogenous miPEP products
where miRNA accumulation was found to increase with miPEP production or application, and
developmental changes in root formation were observed (Lauressergues et al. 2015). Furthermore,
translation of “non-coding” ORFs is not unique to the primary transcripts of miRNAs. Using a
combination of RNASeq and RiboSeq, Bazin et al. (2017) identified over half of the predicted
lncRNAs in A. thaliana roots experiencing phosphate limitation to be occupied by ribosomes.
Additionally, the lncRNA Aw112010 was recently identified to encode a translated small ORF
that is involved in mucosal immunity in mammals (Jackson et al. 2018).

1.3.5 Regulation of translation by lncRNAs

Other cytoplasmic lncRNAs are capable of regulating gene expression post-transcriptionally by
affecting translation or disrupting RNA stability. Brain Cytoplasmic RNA 1 (BC1 ), associated
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with epileptic seizures in humans, localises to dendrites and represses translation by preventing
initiation of the small ribosomal subunit (Wang et al. 2005). Conversely, antisense-ubiquitin
carboxy-terminal hydrolase L1 (Uchl1 ) is a lncRNA that increases translation of its sense protein
UCHL1 (Carrieri et al. 2012). Antisense-Uchl1 interacts with a short interspersed nuclear element
(SINE), specifically a SINEB2 element, located inside sense-Uchl1 and by a mechanism that
remains unknown, results in an increase of uchl1 translation by polysomes.

1.4 Functional validation of lncRNAs

Empirical characterization of lncRNAs is not trivial. Although a variety of lncRNA functions are
presented above, we still do not know the full extent of lncRNA functionality. Because lncRNAs
are known to interact with DNA, RNA and proteins, there is no single assay or experiment that
can be used to identify binding partners or target sequences of a lncRNA. Typically, functional
validation of a lncRNA starts with computational prediction after sequencing using prediction
software discussed in depth in Section 1.7.2. To confirm that the putative lncRNA is non-coding,
RiboSeq, or ribosome footprinting is often used to identify ribosome-protected fragments of RNA
(Tichon et al. 2016). In combination with computational methods, wet lab experiments can be
used to determine localization and to identify binding partners and putative functions of novel
lncRNAs as discussed in this Section.

1.4.1 Co-expression studies

Co-expression networks are used to identify clusters of genes that co-express with lncRNAs of
interest. Typically, genes comprising a single cluster are enriched in a particular function or
pathway. Using a “guilt-by-association” approach, one can make functional predictions for un-
annotated genes using functional enrichment of annotated genes in a certain cluster (Langfelder
and Horvath 2008). Liao et al. (2011) used this co-expression network and “guilt-by-association”
approach with microarray data to make function predictions for 340 mouse lncRNAs. Using
three different network-based functional enrichment methods, the putative mouse lncRNAs were
annotated with organ and tissue development, cellular transportation and metabolic process
functionality.

Pellegrina et al. (2017) used a similar network-based technique to identify putative functions
of lncRNAs involved in the human immune response to sepsis. The authors identified a group
of co-expressed putative lncRNAs predicted to be involved in cellular respiration. Additionally,
lncRNAs that were differentially expressed during sepsis compared to control individuals dis-
played conserved regulatory motifs that indicate methylation and transcription factor binding.
Similarly, Fang et al. (2017) used a co-expression approach to identify function and pathways of
lncRNAs associated with Alzheimer’s in mice models. This computational approach to lncRNA
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characterization is used to predict function and identify putative pathway involvement, and pro-
duces information that may be invaluable to experimental methods used in lncRNA validation
studies.

1.4.2 Subcellular localization of lncRNA expression

Subcellular localization of lncRNA expression can be used to narrow the search for putative can-
didate functions. Before empirical studies, cellular location of lncRNAs can be predicted from
sequence motifs in lncRNA transcripts using a deep neural network algorithm (Gudenas and
Wang 2018). After computational prediction, researchers often use fluorescent in situ hybridiza-
tion (FISH) for empirical studies on transcript subcellular location identification. For example,
Qin et al. (2017) used FISH to demonstrate that a drought associated lncRNA, drought in-
duced lncRNA (DRIR) localized to root cell nuclei. A nuclear lncRNA ruled out many possible
functions, such as miRNA target mimicry, because of its functional location in the nucleus of
a cell. Interestingly, a human lncRNA, noncoding RNA activated by DNA damage (NORAD),
was found to localise to both the cytoplasm and nucleus in normal conditions (Munschauer et
al. 2018). However, when human cancer cells were stressed with DNA damage, using FISH the
genome stabilizing lncRNA was identified to preferentially localize to the nucleus. The transition
to a primarily nuclear-located lncRNA after DNA damage induction suggests that NORAD is
more involved in DNA stabilization when cells are under stress.

1.4.3 RNA-protein interactions

As previously mentioned, the lncRNA HOTAIR methylates its target gene by directly interacting
with PRC2. Electrophoretic Mobility Shift Assay (EMSA) was used to identify the exact subunit
of PRC2, the ERH2-EED heterodimer, that directly interacts with HOTAIR (Wu et al. 2013).
After identifying the interacting protein subunit, gradual deletions in HOTAIR were also used,
in conjunction with EMSA, to identify an 89-mer domain of HOTAIR that was essential for
the interaction with the ERH2-EED heterodimer (Wu et al. 2013). Using a similar technique,
proteins interacting with NORAD were identified using RNA antisense purification and RNA-
protein specific cross-linking (Munschauer et al. 2018). Interacting proteins were enriched in
functions related to DNA unwinding and damage repair, eventually leading to identification of
an interacting topoisomerase-complex assembly. The authors confirmed the predicted genome
stability functionality of NORAD using a combination of FISH and a RNA-protein interaction
assay.
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1.4.4 CRISPRi non-coding libraries

Liu et al. (2017b) used a unique CRISPR-based approach to systematically repress transcription
of a large catalogue of predicted human lncRNAs in three cell lines. This genome-wide approach
was used to identify phenotypes associated with lncRNA knockdown, which in turn was used
to predict function. In total, although exact molecular mechanisms were not identified, Liu
et al. (2017b) identified 499 lncRNAs essential for growth in human cell lines. This confirmed
that a modified CRISPR protocol could be used in future lncRNA studies to identify additional
functions of lncRNAs in other species.

1.5 Implications of lncRNAs in human diseases

To date, the majority of functionally characterized lncRNAs are of human origin partly due to
their involvement in human diseases. The connection of lncRNAs to diseases, disorders, and
illnesses is generally due to the essential roles of lncRNAs in mammalian development (Parna
et al. 2017). Parna et al. (2017) cite over 70 lncRNAs essential to the development of mammals,
and 43 diseases, disorders or syndromes associated with dysregulation of lncRNAs. For exam-
ple, rheumatoid arthritis, Alzheimer’s disease, Autism spectrum disorders and various cardiac
disorders have been associated with disordered expression of at least one associated lncRNA.
Because lncRNAs are gene expression regulators, it is not surprising that these transcripts are
also involved in cancer. LncRNAs associated to disease can also be used a biomarkers or poten-
tial gene therapy targets and may be useful in a clinical setting. However Gomes et al. (2017)
suggest further studies are required before application as many lncRNAs demonstrate currently
uncharacterised pleiotropic effects.

As discussed previously, lncRNA functionality is not straight forward as lncRNAs are able to
regulate genes on all possible levels and the extent of lncRNA function remains unknown. H19,
an example of a lncRNA with multiple functions, is associated with cancer and its expression
is induced by the MYC oncogenic transcription factor with consequent down-regulation of the
tumor-suppressive p53 (Barsyte-Lovejoy et al. 2006). H19 is not the only lncRNA known to
interact with MYC. Transcribed upstream of MYC, the lncRNA colorectal cancer-associated
transcript 1-long isoform (CCAT-1 L) is located within an enhancer. CCAT-1 L promotes
chromatin looping and directly regulates theMYC transcription which is constitutively expressed
in multiple cancers (Xiang et al. 2014) HOTAIR, the lncRNAs involved in methylation of HoxD,
can form transcription factor triplets and has been observed to directly affect gene regulation in
glioblastoma (Li et al. 2016b).

LncRNAs also regulate cancer pathways that are not MYC -associated. For example, some
cancer-associated lncRNAs can act as natural miRNA target mimics, reminiscent of IPS1 in
A. thaliana. The lncRNA highly upregulated in liver cancer (HULC ) acts as an endogenous
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miRNA sponge for multiple miRNAs, including miR-372, a cancer-associated small ncRNA
(Wang et al. 2010). LncRNAs have also been shown influence genome stability, such as prostate
cancer-associated transcript 1 (PCAT1), which represses BRCA2 and impairs double stranded
DNA break repair (Prensner et al. 2014). Since 2010, the connection of cancer and lncRNA ex-
pression had been an extremely active area of both cancer and lncRNA research (Renganathan
and Felley-Bosco 2017). While understanding the molecular mechanisms of cancer is of interest,
many studies also focus on using cancer associated-lncRNAs as therapeutic targets.

1.6 The roles of lncRNAs in plant development and
stress response

LncRNAs remain a relatively novel classification of gene regulators and this area of research is
currently dominated by lncRNAs found in animal systems with a large focus on humans. Of
just over 440 empirically functionally characterized lncRNAs in all species, merely 13 have been
identified in plants to date (Wang and Cheksnova 2017; Nejat and Mantri 2018; Zhao et al.
2018b). Because so few validated plant lncRNAs exist, little is known of the functionality and
biogenesis differences between plant and animal lncRNA transcripts. However, differences in
small ncRNAs between plant and animal systems suggests there may be fundamental differences
between how lncRNAs function in each system. For example, miRNAs in plants associate with
different proteins during miRNA-mediated gene silencing, and silence genes by mRNA cleavage
rather than translational interference in animals (Millar and Waterhouse 2005). We do know,
however, that while most lncRNAs in all species are transcribed by RNA polymerase II, the
polymerase also responsible for transcription of protein coding mRNAs, some lncRNAs can also
be transcribed by plant specific RNA polymerases Pol IV and Pol V (Wierzbicki et al. 2008).
As we continue to validate plant lncRNAs we will be better equipped to identify additional
differentiating features between plant- and animal-derived lncRNA transcripts.

Similar to animal systems, lncRNAs play essential roles in the development of plants. Two
functionally characterized lncRNAs from plant systems, alternative Splicing Competitor-lncRNA
(ASCO-lncRNA) and early nodulin-40 (ENOD40 ), are both involved in plant root development
and interact directly with speckle-binding proteins (Bardou et al. 2014). Nuclear speckle-binding
proteins localize to the nuclear-speckle, an organelle that contains most splicing machinery.
Nuclear speckle-binding proteins are defined as a specific type of RNA binding protein that
function as alternative splicing regulators and act on specific mRNA targets. Both ASCO-
lncRNA and ENOD40 are involved in alternative splicing of their appropriate nuclear speckle-
binding protein target mRNAs and are involved in root architecture changes.

Bardou et al. (2014) proposed that ASCO-lncRNA “hijacks” the nuclear speckle-binding pro-
tein to modify the splicing events of the target mRNAs. This “hijacking” event causes shifts in
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lateral root formation. ENOD40 , a conserved and small ORF containing lncRNA, differs from
ASCO-lncRNA and is functional in the cytoplasm rather than the nucleus (Campalans et al.
2004). After interaction with a nuclear speckle-binding protein, ENOD40 localizes to the cyto-
plasm in root nodules during development and is involved in nodule organogenesis (Campalans
et al. 2004). Hidden treasure 1 (HID1 ) is another conserved plant lncRNA involved in plant de-
velopment (Wang et al. 2014b). Constitutively expressed in all tissues, HID1 promotes seedling
photomorphogenesis in A. thaliana by repressing the transcription of phytochrome-interacting
factor 3 (PIF3 ) via chromatin binding.

Akin to Xist, COOLAIR transcripts may be the most well-studied and well-characterized
lncRNAs in plant systems. COOLAIR transcripts are two of many lncRNAs that negatively
regulate FLC during vernalization in A. thaliana. COOLAIR transcripts are joined by a suite of
three other lncRNAs, cold assisted intronic noncoding RNA (COLDAIR), cold of winter-induced
noncoding RNA from the promoter (COLDWRAP) and Antisense Long (ASL) transcript, that
all play unique roles in vernalization and/or FLC regulation (Heo and Sung 2011; Kim and Sung
2017; Shin and Chekanova 2014).

The lncRNAs controlling vernalization modulate the expression of FLC , a MADS-box tran-
scription factor that induces multiple genes required for flowering (Bastow et al. 2004). COOLAIR,
COLDAIR and COLDWRAP are all transcribed from the FLC locus and interestingly, COOLAIR
represents two alternatively spliced NAT lncRNAs. The exact functions of COOLAIR transcripts
and COLDAIR are difficult to discern, however researchers have shown that while COOLAIR
transcripts may not be required for vernalization, these transcripts are responsible for an in-
creased rate in the vernalization response. COOLAIR transcripts were also found to bind to
the genomic sequence of FLC and directed a change in chromatin to H3K27me3 methylation
(Csorba et al. 2014). Although H3K27me3 methylation is typically associated to PRC2, there
is little evidence to suggest direct interaction of PRC2 with COOLAIR. Alternatively, COLD-
WRAP, expressed from FLC’s promoter, works directly with COLDAIR to form a chromatin
loop that does interact with PRC2 to mediate epigenetic silencing of FLC (Kim and Sung 2017).
COLDAIR differs from its other vernalization-associated lncRNAs as it transcribed from FLC ’s
first intron (Heo and Sung 2011). ASL is another lncRNA that regulates FLC . Also acting in
cis, ASL is transcribed from a region overlapping with COOLAIR, however, ASL is involved in
regulation of FLC in A. thaliana ecotypes that do not require vernalization (Shin and Chekanova
2014).

While many lncRNAs are involved in organ development, plant lncRNAs are also commonly
associated with a stress response. As RNASeq becomes ubiquitous with molecular biology re-
search, researchers can use sequencing technology to identify novel lncRNA sequences in addition
to how expression changes during stress. Such novel studies have identified thousands of pre-
dicted lncRNAs in many plant species associated with multiple stressful conditions (e.g. Zhang
et al. 2014, Zhao et al. 2018b, Liu et al. 2018b, Zhang et al. 2018) and developmental stages (e.g.
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Huang et al. 2018, Liu et al. 2018a, Kiegle et al. 2018), however most lncRNAs remain without
empirical functional characterization.

1.7 Current lncRNA prediction methods and databases

Currently, lncRNA research remains a bioinformatic challenge due to the lack of empirically
validated lncRNAs. Typically, researchers rely either on databases of predicted lncRNAs or are
required to predict lncRNAs from sequencing data. Tools for lncRNA-focused research exist, but
few are applicable to plant systems. In particular, there is an under-representation of empirically
validated plant lncRNAs sequences in comprehensive lncRNAs repositories, and a lack of plant
lncRNAs included in training datasets of machine learning algorithms for lncRNA prediction.

1.7.1 LncRNA databases

To date, there are two plant lncRNA databases currently available with associated peer reviewed
prediction methods: GREENC (Paytuvi-Gallart et al. 2016) and CANTATAdb (Szczesniak et
al. 2016). Both GREENC and CANTATAdb use transcript filtering methods for lncRNA pre-
diction, where transcript features must meet thresholds to be classified as putative lncRNAs.
GREENC uses transcriptome annotation provided by Phytozome v10.3 (Goodstein et al. 2012)
leaving predictions only possible for known transcriptional units in each plant species according
to reference genome annotation. GREENC’s filtering protocol does not consider a transcript to
be a putative lncRNA if they: 1. are < 200nt in length, 2. have an ORF >120 amino acids 3.
align to a protein in the SwissProt database (Bairoch and Apweiler 2000), 4. are predicted to be
coding by the Coding Potential Calculator (Kong et al. 2007) or, 5. are known/are predicted to
be other classifications of non-coding RNA. GREENC’s methodology results in lncRNA predic-
tions for 43 plant species that are restricted to reference annotations and a “classic” definition of
a lncRNA. Additionally, the protocol discounts lncRNAs that align to protein coding sequences
and can filter out lncRNAs that overlap with protein-coding genes, such as COOLAIR.

CANTATAdb (Szczesniak et al. 2016) also uses a filtering method, but is not restricted
to annotated sequences in plant transcriptomes and instead uses transcripts assembled from
RNASeq data. CANTATAdb’s prediction protocol first removes transcripts previously anno-
tated as protein-coding, rRNA, tRNA, or small ncRNAs. Transcripts are then classified as
protein coding or non-coding by the Coding-Non-Coding Index (CNCI) (Sun et al. 2013). Tran-
scripts with BLAST hits in the Rfam database, identified as plastid transcripts or are > 200
nt are removed from lncRNA predictions. Similarly to GREENC, predictions made available
by CANTATAdb are restricted to arbitrary definitions of lncRNAs previously set to distinguish
from small ncRNAs, and which may not be truly representative of lncRNAs transcripts.
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Not all plant-focused ncRNA databases rely on their own methods for transcript classification.
The Plant Non-coding RNA Database (PNRD) (Yi et al. 2015) uses a data combing approach
to aggregate predicted and validated ncRNA from a combination of other databases, literature,
and their own data. PNRD contains multiple classifications of ncRNA for over 150 plant species,
of which only 21 species include lncRNA predictions. However, the vast majority of lncRNAs
available from PNRD remain computationally predicted.

NONCODEv5 (Fang et al. 2018), a ncRNA database focused on lncRNAs, contains lncRNA
predictions from 17 species, of which only a single species is from the plant kingdom (A. thaliana).
NONCODEv5 contains lncRNAs predicted by all other versions of NONCODE, as well as novel
lncRNAs from recently published articles and lncRNA and genomic databases. NONCODEv5
is arguably the most extensive lncRNA repository containing ncRNA sequences identified by:
Ensembl (Zerbino et al. 2018), RefSeq (O’Leary et al. 2016), lncRNAdb (Quek et al. 2015),
LNCipedia (Volders et al. 2013), TAIR (Lamesch et al. 2011), FlyBase (Gramates et al. 2017),
Lnc2Cancer (Ning et al. 2016), MNDR (Wang et al. 2013b), and LncRNAWiki (Ma et al. 2015).
However, while NONCODEv5 offers a large amount of information on each predicted lncRNA,
such as expression in multiple tissue types and predicted 3D structure, it is difficult to discern
the status of empirical validation of each transcript, and similar to PNRD, the vast majority of
lncRNA sequences available in the database remain computationally predicted.

Unlike the previously mentioned databases, lncRNAdb v2.0 is a lncRNA database manually
curated from literature and contains only empirically validated lncRNAs from multiple species.
However, while the database does contain sequences from plant systems, it is not plant focused
and the large majority of sequences are animal-derived. Similarly, LncRNAdisease (Chen et al.
2013), a database focused on the association of lncRNAs and human diseases, contains only
experimentally confirmed lncRNA sequences and does not contain plant sequences.

1.7.2 lncRNA prediction software

There are fundamental issues with lncRNA prediction pipelines that use transcript filtering,
or alignment- and homology-based methods. For example, transcript filtering often restricts
prediction of lncRNAs to transcripts longer than 200nt and those that do not code for proteins
or peptides. However, there are functionally characterized lncRNAs that violate both of these
arbitrary rules. For example, BC1 is a 152nt lncRNA, shorter than the classic 200nt cutoff for
lncRNA prediction (DeChiara and Brosius 1987). Additionally, ENOD40 , a lncRNA identified
in soybean, encodes two functional small peptides (Rohrig et al. 2002). There is little evidence
for extensive sequence conservation of lncRNA sequences, even in species of the same family
(Nelson et al. 2016), making prediction via homology difficult. Machine learning, therefore, is
an alternative method that researchers have used to help predict this heterogeneous class of
RNA where predictions are not restricted to hard thresholds and instead use patterns in data to
identify sequences of interest.
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A brief introduction to machine learning in computational biology

While machine learning is not only used in a biological setting, the extensive amount of data
that a single experiment can generate makes biology an ideal subject area for the application
and extension of machine learning algorithms. The objective of machine learning is to identify
patterns and relationships in data without having to specify which traits are the most important
and informative features (Angermueller et al. 2016). This is particularly useful in biological sys-
tems because predictions made by machine learning algorithms are not reliant on a set of rules
or thresholds and can come from incomplete data (Angermueller et al. 2016). In machine learn-
ing, algorithms typically fall under two main categories: supervised and unsupervised learning.
Supervised learning approaches “learn” from paired input variables containing features and clas-
sification outcomes, where the algorithm is trained on known positive and negative data. Using
these training datasets, a machine “learns” a function that classifies the training information
that can be applied to new and unknown data points. Unsupervised learning approaches do not
include the training step and instead identify patterns in input features that are used to cluster
data sets into groupings based on similarity.

The earliest mention of machine learning in biology was described by Rosenblatt (1958) and
referred to the theory of “the perceptron” algorithm. The perceptron, a detailed mathemati-
cal model that attempted to explain how animals think and process information, became the
backbone to the more recent field of artificial neural networks and was eventually applied in
1982 to identify translational start-sites in E. coli (Stormo et al. 1982). More recently, machine
learning has been applied to “big data” for pattern identification and clustering to ultimately
make experimental procedures more time and cost efficient. For example, secondary protein
structure can be predicted through deep convolutional neural fields (Wang et al. 2016), enabling
more accurate functional predictions that are used for drug design. The Basset software uses
convolution neural networks to identify DNA motifs, even in non-coding regions, that predict
genome accessibility and protein-interaction potential (Kelley et al. 2016). The tool can be used
to identify mutations in a single DNA sequencing experiment that may affect the genome’s abil-
ity to bind with proteins, and Kelley et al. (2016) hope the tool can contribute to research on
medicine personalized to an individual’s genome.

As modern machine learning approaches are developed, biologists are able to make use of
large datasets to solve even more complex biological problems. Often researchers choose ensemble
methods for robust predictions. This class of predictors uses multiple machine learning algorithms
to make a single prediction, and relies on many learners to make accurate final predictions
(Polikar 2012). While these traditional machine learning algorithms are able to identify patterns
in given features to make predictions in data, deep learning, a new group of learning algorithms, is
unique in that they do not always require the input of scientists to curate distinguishing features
for prediction. For example, when considering deep learning in genomics, one can use genomic
or transcriptomic sequences as input, and allow a deep neural network to identify essential
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distinguishing features in nucleotide sequences without researcher intervention (Angermueller
et al. 2016).

Machine learning for lncRNA prediction

There are many machine learning frameworks, and a multitude of potential combinations of
traits to use to distinguish lncRNAs from all other transcripts in a species. Firstly, while not
necessarily developed to identify lncRNAs, protein coding predictors are used to discriminate
between ncRNA and protein coding genes. CPC2 (Kang et al. 2017), CPAT (Wang et al. 2013a)
and CNCI (Sun et al. 2013) are all tools that quantify the likelihood of a transcript to be
translated into a functional protein. The results and features of protein coding predictors are
often used as features in other lncRNA prediction software.

There are however, specific tools created to identify lncRNAs from nucleotide sequences.
PLEK, or predictor of long non-coding RNAs and messenger RNAs is based on a k-mer scheme
and uses a support vector machine (SVM) algorithm trained on k-mer usage in lncRNAs (Li
et al. 2014). LncRScan-SVM (Sun et al. 2015), another SVM based software, uses features based
on transcript length, codon usage, nucleotide composition, and protein coding ability. LncADeep
(Yang et al. 2018) takes a different approach and uses deep neural networks to not only predict
lncRNAs, but also to identify potential interacting proteins using pathway enrichment and KEGG
annotations. The information given by these software tools can be used to distinguish potential
non-peptide producing lncRNAs from protein coding mRNA, although they are not built to
differentiate between functional lncRNAs and transcriptional noise.

PLEK, LmcRScan-SVM and LncADeep have high accuracies on test data, however each
algorithm was only trained on animal-derived sequences. PLEK was trained on data from nine
animal species and tested on human cell line data (Li et al. 2014). LncRScan-SVM, trained on
both human and mice lncRNAs, was only tested on human datasets (Sun et al. 2015). Lastly,
LncADeep was trained solely on human data and tested on both mouse and human transcripts
(Yang et al. 2018). While these software are useful for animal lncRNA prediction, animal-
sequence biases may prevent accurate predictions when they are used on plant-derived sequences.
As there exists differences between animals and plants in other ncRNAs, such as miRNAs (Axtell
et al. 2011), the inclusion of plant transcript sequences in training and testing datasets of machine
learning methods is imperative for accurate plant lncRNA prediction.

In recognition of the lack of plant-focused lncRNA classifiers, Singh et al. (2017) created
PLncPRO. PLncPRO, a random forest model, is trained on plant sequences and was tested on
both animal and plant derived transcripts. However, like PLEK, LncRScan-SVM and lncADeep,
the vast majority of lncRNA sequences on which the PLncPro algorithm was trained are yet
to be empirically validated and remain merely computationally predicted. In other words, the
software may have been trained on sequences that are transcribed and meet the classic criteria for
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distinguishing lncRNAs but remain without a validated regulatory role. The report of Simopoulos
et al. (2018) represents the first machine learning based lncRNA classifier that is trained and
tested on plant transcripts and uses a training dataset with only empirically validated lncRNAs.

1.8 Drought is a major cause of crop loss

As mentioned in Section 1.6, lncRNAs have been implicated in plants’ responses to stress (Zhang
et al. 2014; Zhao et al. 2018b; Liu et al. 2018b; Zhang et al. 2018). Drought contributes the most
of all abiotic stressors to a reduction in crop yield (Boyer 1982), thus of interest to researchers
focused on crop improvement. Predictions regarding temperature and precipitation changes due
to climate change are difficult to make and they vary depending on global location (Schlaepfer
et al. 2017). However, models tend to agree that reduced soil moisture, or aridity, is predicted to
expand during the 21st century (Schlaepfer et al. 2017). Schlaepfer et al. (2017) also predict that
the timespan of ecological droughts, a long-term reduction in water resources that creates overall
stress in an ecosystem, will increase in deep soil layers. Lesk et al. (2016) identified that recent
droughts (from 1985-2007) cause, on average, a greater reduction in cereal yield (13.7% yield
reduction) than droughts that occurred between 1964 and 1984 (6.7% yield reduction), which
the authors suggest may be due to many reasons including an increased drought sensitivity in
recent cultivars, or longer and more severe droughts. Lobell et al. (2014) made similar conclusions
regarding crops and discuss problems with modern maize cultivars grown in the U.S Midwest that
have increased in yield but have not become more drought tolerant. Currently, even countries
using technological advances to farming are at risk of crop yield reduction directly related to
climate change and drought (Schlaepfer et al. 2017). Understanding the molecular mechanisms
of how both stress sensitive and resistant plant species respond to drought stress is imperative
to maintain high yielding species that are less adversely impacted by drought stress.

1.8.1 Molecular responses of plants to drought stress

As dehydration stress is commonly encountered in agriculture, and the stress has a major impact
on yield, the classic molecular responses of plants to drought are well studied. Like other en-
vironmental stresses, drought stress first activates the biosynthetic pathways for the production
of abscisic acid (ABA), a stress hormone (Xiong and Zhu 2003). ABA then induces an exten-
sive downstream signalling pathway that ultimately results in phosphorylation of target pro-
teins and activation of stress-related transcription factors. ABA is first perceived by binding to
PYRABACTIN RESISTANCE1/PYR1-LIKE/REGULATORY COMPONENTS OF ABA RE-
CEPTORS (PYR/PYL/RCAR), a group of receptors (Danquah et al. 2014). Once bound to
ABA, PYR/PYL/RCAR receptors experience a conformational change allowing binding of Pro-
tein Phosphatase 2Cs (PP2Cs). The complex formation between receptors and PP2C, in turn,
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inhibits PP2C and ultimately indirectly activates SNF1-related protein kinase 2 (SnRK2) a ma-
jor regulator of the plant stress response (Umezawa et al. 2013). Activated SnRK2 targets abiotic
stress associated genes, such as transcription factors that affect the expression of other genes,
ion channels, and membrane proteins (Umezawa et al. 2013).

Altered gene expression accompanies the physiological changes of plants experiencing dehy-
dration, and many of these changes are directly affected by SnRK2 targets. For example, the
ABA-responsive element binding factor, a basic leucine zipper (bZIP) transcription factor, is
known to be activated in the ABA/SnRK2 regulation cascade and increased expression has been
shown to improve abiotic stress tolerance in multiple plant species (Huang et al. 2010; Lee et al.
2010; Muniz-Garcia et al. 2012) There is also evidence that SnRK2 targets are associated with
physiological changes to drought stress such as stomatal closure, an important strategy used by
plants for water conservation (Grondin et al. 2015)

While lncRNAs are known to play roles in stress responses of plants, only recently was
a drought-response associated lncRNA identified. Expression of DRIR was first identified in
an RNASeq experiment of A. thaliana seedlings experiencing salt stress, but increased expres-
sion was also confirmed in plants experiencing a drought stress (Qin et al. 2017). DRIR is an
A. thaliana-specific 755nt long lncRNA that does not share homology with transcripts in any
other species. Like other lncRNAs identified in A. thaliana, DRIR contains a short ORF. DRIR
displays tissue-specific expression with high expression identified in leaves and roots and little
expression in stems, inflorescences or siliques. While the lncRNA is known to remain in the
nucleus, the exact molecular mechanisms regulated by DRIR are difficult to identify. However,
DRIR may be involved in the ABA response to drought stress as expression of this lncRNA was
induced by ABA, and well-characterized genes in the ABA signalling cascade, such as AB15,
are induced during DRIR-overexpression. The work by Qin et al. (2017) underlines that even
well-known signalling pathways, like the drought-induced ABA signalling cascade, may have
previously unidentified lncRNA players, such as DRIR.

1.9 E. salsugineum as a model system for studying
abiotic stress

Eutrema salsugineum is a halophytic plant that is naturally tolerant to multiple abiotic stresses
(Amtmann 2009). E. salsugineum’s innate tolerance to salt (Gong et al. 2005), drought (MacLeod
et al. 2014), cold (Griffith et al. 2007), and nutritional deficiencies (Velasco et al. 2016) suggests
that E. salsugineum demonstrates characteristics of an extremophile. As such, E. salsugineum
has been used as a model organism for stress tolerance studies. There exists two commonly-
studied natural accessions of E. salsugineum, Shandong and Yukon (reviewed by Kazachkova
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et al. 2018), named for the location of natural habitat. Shandong plants, naturally found in tem-
perate and monsoonal Shandong, China, have different molecular and physiological responses to
drought stress in comparison to Yukon plants, naturally found in the sub-arctic and semi-arid
Yukon, Canada (Champigny et al. 2013; MacLeod et al. 2014). Wang et al. (2018c) recently
estimated the divergence time of all known E. salsugineum ecotypes at around 34 kya. Inter-
estingly, the species is naturally found in many diverse environments, for example, in China,
Russia, and in North America as far south as Mexico (German and Koch 2017). The analysis
by Wang et al. (2018c) also revealed little genetic diversity between ecotypes, around a quarter
less than has been observed in A. thaliana. This leads to questions on how each ecotype can
have unique gene expression patterns when experiencing stress with so little detectable genetic
variation. However, as Wang et al. (2015) discuss, extreme stress has been associated with high
purifying selection, potentially explaining the genetic uniformity of the species.

To further molecular studies on this model organism, the E. salsugineum genome was se-
quenced by Yang et al. (2013). Since then, researchers have continued progress into understand-
ing the genetic mechanisms behind this plant’s stress tolerance abilities. In fact, studies by Yin et
al. (2018) and Champigny et al. (2013) have identified an additional 65 and 665 transcripts from
RNASeq data of E. salsugineum, some associated to a stress response. Thus E. salsugineum
represents a potential untapped resource of stress-associated genes, likely including seemingly
species-specific lncRNAs that merit identification and functional analysis.

1.9.1 E. salsigineum in comparison to A. thaliana

A. thaliana is the most commonly used model plant for molecular studies (Provart et al. 2016).
Its small size and short life cycle enable researchers to grow plants quickly with few resources.
E. salsugineum is similar to A. thaliana and shares many morphological features, such as a small
size and short life cycle, and ability to self-pollinate. Although having an estimated divergence
time of 43.2 million years, both species have maintained a significant amount of genetic similarity
and share 80% sequence homology and 70% of the E. salsugineum genome is in synteny with
that of A. thaliana (Yang et al. 2013). The two species belong to the Brassicaceae family but
are found in two separate phylogenetic clades (Yang et al. 2013).

Although the two species are very genetically similar, A. thaliana lacks the extensive stress
tolerance abilities demonstrated by E. salsugineum. Adapted to a high salt environment, and
naturally found in environments with saline soil, E. salsugineum is a halophyte (Champigny et al.
2013). However, similarities in genome sequence and structure of the two species means that the
extensive amount of genetic methods developed for A. thaliana can often be applied to E. salsug-
ineum. Additionally, combinations of comparative “-omic” and physiological studies between the
two species can help reveal the specific adaptations held by E. salsugineum that confer superior
stress tolerance. As there is large genetic overlap between A. thaliana and E. salsugineum, one
can infer that large scale changes do not underlie the higher stress tolerance in E. salsugineum,
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and instead that the A. thaliana genome, and many other plant species, potentially already con-
tain genes essential to stress tolerance. For example, Zhu et al. (2014) isolated and characterized
EsWAX1 from E. salsugineum for the creation of transgenic A. thaliana plants. EsWAX1, asso-
ciated with cuticular wax formation, increased drought tolerance when expressed in A. thaliana,
suggesting that the difference in the cuticular waxes of E. salsugineum plays important roles in
the increased drought tolerance of the species. Additionally, overexpression of EsWAX1, a MYB
transcription factor, was associated differential expression of other A. thaliana genes such as
Cerberus 1 (CER1), 3-ketoacyl-CoA synthase (KCS2), Very-long-chain 3-oxoacyl-CoA reductase
(KCR1) demonstrating that research on one species can be applied to the other.

1.9.2 Molecular mechanisms required for E. salsugineum stress
tolerance

E. salsugineum, although naturally resistant to abiotic stress, often expresses “classic” stress-
associated genes when experiencing abiotic stress. Gong et al. (2005) found that during salt stress,
around 40% of genes differentially expressed in E. salsugineum were also differentially expressed
in A. thaliana. For example, ABA responsive genes and other general stress-related genes such
as RAB18, RD21A and RD19A were upregulated in both A. thaliana and E. salsugineum plants
grown in saline conditions (Gong et al. 2005). However, the differences in molecular responses
between the two species may explain E. salsugineum’s stress response strategies. Furthermore,
differential gene expression studies may not show the entire picture of E. salsugineum’s stress
response. Instead of regulating stress responsive genes, E. salsugineum constitutively expresses
stress associated gene genes, even without being exposed to salinity, a process referred to as
“priming” (Taji et al. 2004; Wong et al. 2006).

Constitutive expression of abiotic stress genes is not unique to E. salsugineum’s salinity
response. Consistent high expression of stress related genes has also been observed for E. sal-
sugineum when exposed to phosphate deprivation (Velasco et al. 2016). Of interest is also how
the commonly studied Yukon and Shandong E. salsugineum ecotypes uniquely respond to stress.
During drought, some plants can acclimate physiologically to survive in water deprived environ-
ments. Cuticular waxes, and expression of associated genes, can change to help the plant reduce
water loss (LeProvost et al. 2013). Xu et al. (2014) identified differences in cuticular wax content
and differential gene expression of genes associated with cuticular waxes in Yukon and Shandong
ecotypes. More cuticle waxes correlated to a reduced water loss in Yukon plants, demonstrating
that the Yukon ecotype is superior at tolerating drought stress (Xu et al. 2014).

MacLeod et al. (2014) also found differences in the physiological, metabolic and molecular
responses of Yukon and Shandong plants to a progressive drought treatment where plants were
subjected to two water deprivation conditions separated by a re-watering recovery period. Instead
of using time intervals during during both the dehydration and hydration components of the
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study, the authors determined the fraction of transpirable soil water (FTSW). This method
allowed the authors to account for, and quantify, the progression of water deficit for each ecotype.
Plants were observed at a control, or well-watered condition, at two points during a first drought
(40% and 10% FTSW), a re-watering condition, and again at two points during a second drought
(40% and 10% FTSW). Although both ecotypes grew during the experimental period, Yukon
plants were able to reach and maintain a lower solute potential than Shandong plants. Select
dehydrins showed different expression patterns in each ecotype with Yukon plant dehydrins
typically being expressed at higher baseline levels in control plants and larger changes in relative
gene expression when exposed to drought stress. However, this study did not include analysis of
global molecular changes of E. salsugineum ecotypes experiencing a progressive drought.

1.9.3 Applying drought response strategies of extremophyte species
to crops

Drought responses of plants are typically associated with two main strategies: drought avoidance
and drought tolerance (Fang and Xiong 2015). Drought avoidance strategies describe methods
plants use to maintain physiological processes under mild stress, such as adjusting growth rate or
adjusting certain morphological traits like increased cuticular wax or a changed root architecture
(Xu et al. 2014; Ogburn and Edwards 2010). Drought tolerance, on the other hand, describes
methods taken by a plant that can sustain high levels of stress by up-regulating genes and
metabolic pathways that can help mitigate potential damage by stress (Mitra 2001). MacLeod
et al. (2014) found that Yukon and Shandong E. salsugineum plants each display one of these
drought response strategies with Shandong plants demonstrating drought avoidance and Yukon
plants drought tolerance. E. salsugineum genotypes employing different strategies for drought
tolerance offer a unique perspective to drought research. Specifically, one can use comparative
studies to delineate tolerance and avoidance traits and their associated genetic determinants
which is knowledge that could be applied towards crop improvement. Furthermore, E. salsug-
ineum Yukon plant’s capacity for “priming” in response to salt and phosphate stress (Gong et
al. 2005; Velasco et al. 2016), where classic stress-responsive genes are constitutively expressed
under non-stressed conditions, has been identified as a drought response strategy in resurrec-
tion plants (Costa et al. 2016). While “priming” has not yet been identified in E. salsugineum
plants undergoing dehydration stress, other species using this approach which suggests that the
“priming” strategy is conserved throughout many species.

In a recent review, Bechtold (2018) discusses how, while many studies have identified drought-
associated genes, few studies have successfully used these genes to make improvements in crop
plants, and suggests that researchers consider a more “systems biology” based approach for crop
improvement. Fang and Xiong (2015) instead suggest that our current poor state of knowledge
of the molecular cross-talk between various drought and other abiotic stress response strategies
is holding back efforts to improve drought tolerance in crops. As such, continued work into
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understanding the molecular mechanisms behind drought response strategies is needed to enable
researchers to identify usable genes for crop improvement. For example, using genes that are
involved in more conserved molecular pathways may have more success than pathways unique
to certain species.

1.10 Thesis objectives

The state of our knowledge on lncRNAs is overwhelmed with studies on transcripts derived from
animal systems. As such, information on plant lncRNAs is severely lacking. Although there is
evidence to support the important roles that lncRNAs play in plants, such as in development
and stress responses (Bardou et al. 2014; Heo and Sung 2011), the limited number of experi-
mentally validated plant lncRNAs restricts research on the molecular mechanisms and potential
applications of this RNA class. Current computational lncRNA prediction methods are not ad-
equate for lncRNA identification in plant transcriptomes. For example, plant-geared databases,
such as GREENC and CANTATAdb, use filtering methods for lncRNA prediction that cannot
identify “non-canonical” lncRNAs shorter than 200nt or those that code for small, functional
peptides. Similarly, the machine learning-based software tools that are currently available are
often trained mostly on non-validated animal sequences. Furthermore, our current knowledge
of lncRNA evolution and conservation suggests that limited sequence and secondary structure
conservation exists (Nelson et al. 2016; Rivas et al. 2017). Other than positional conservation
and GC content patterns, few other molecular features of lncRNAs have been tested for conser-
vation explained by phylogenetic relationships. Finally, although lncRNAs have been implicated
in abiotic stress, there remains a single validated drought-associated lncRNA, DRIR, that has
only been identified in the stress-sensitive A. thaliana. The gap in knowledge on plant lncRNAs
and their connections to plant stress responses led to the following hypotheses:

1. An accurate and appropriate lncRNA prediction tool is required to reduce the gap in knowl-
edge on plant lncRNAs compared to non-coding transcripts identified in animal transcrip-
tomes. I hypothesize that an ensemble machine learning framework will allow the most
accurate plant lncRNA predictions when using small training datasets comprised only of
empirically validated lncRNA sequences.

2. Our understanding of lncRNA evolution is limited. The contributions of molecular traits,
other than nucleotide sequences, to conservation and functionality of long non-coding tran-
scripts is currently unknown. If lncRNAs display limited nucleotide sequence conservation
yet evolve from the same ancestor, then lncRNAs should display detectable evolutionary
patterns in other molecular features through phylogenetic signal estimation. In addition,
I hypothesize that lncRNA sequences should display different phylogenetic patterns than
protein coding genes.
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3. Yukon and Shandong E. salsugineum ecotypes have different physiological responses to
a progressive drought treatment that indicate tolerance and avoidance drought response
strategies, respectively (MacLeod et al. 2014). The different responses to drought may
be a result of local adaptations to the different natural environments of each ecotype. I
hypothesize that the global molecular changes of both E. salsugineum ecotypes undergoing
a progressive drought will reflect their respective drought response strategies and hence
will be different, analogous to the physiological differences reported by MacLeod et al.
(2014). Additionally, I predict that each ecotype will express unique lncRNAs in response
to drought stress that act as gene expression regulators dictating the molecular changes
required for acclimation to drought.

1.10.1 Brief experimental objectives

This thesis aims to address the gaps in plant lncRNA research by firstly constructing an ap-
propriate lncRNA prediction tool. Secondly, this thesis will describe the applications of said
tool to further evolutionary studies on lncRNAs, an important RNA classification. Finally, this
thesis will highlight how researchers can use a lncRNA prediction tool alongside transcriptome
studies with specific applications to understanding the drought responses of the halophytic plant,
E. salsugineum. The thesis will seek to achieve the following three main objectives:

1. Create a flexible machine learning-based lncRNA prediction tool trained only on all em-
pirically validated lncRNAs from all species, and test software on plant RNA sequencing
data. The tool should rank predictions to help researchers prioritize high scoring lncRNAs
for future empirical validation, particularly for experimental studies on lncRNAs identified
in plants.

2. (a) Apply the lncRNA prediction tool to transcriptomes of plants with diverse evolution-
ary histories and evaluate the extent to which putative lncRNAs are included among
reference annotations of selected species.

(b) Estimate phylogenetic signal, or evolutionary patterns in molecular traits of lncRNAs
predicted from transcriptomes of diverse plant species.

3. (a) Describe global transcriptional changes that occur during a progressive drought treat-
ment in two E. salsugineum genotypes that display two different drought tolerance
strategies. In addition, identify the putative lncRNA contributions to E. salsugineum’s
molecular responses to drought stress.

(b) Discuss the potential connection of local adaptation to environmental stress, specifi-
cally drought.
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2.1 Preface

Chapter 2 describes the construction and testing of a long non-protein coding RNA (lncRNA)
prediction tool. As described in Chapter 1, the framework of the available software for lncRNA
prediction were not adequate, particularly in the application to plant systems, due to: 1. A
lack of training on plant-derived transcript sequences, 2. The use of invalid transcript filtering
methods, and 3. Training datasets consisting of mainly computationally predicted sequences. In
this work, we constructed and evaluated 24 different ensemble machine learning algorithms. In
addition, we compared the predictions of the best performing model to a known plant lncRNA
prediction database, GreeNC. This chapter is published in BMC Genomics as: C. Simopoulos et
al. (2018). Prediction of plant lncRNA by ensemble machine learning classifiers. BMC Genomics
19, 316. i I made significant contributions to this study. I conceived the experiment jointly with
E.A. Weretilnyk and G.B. Golding. I curated training datasets and constructed and tested a
total of 24 machine learning algorithms. I evaluated all 24 models for selection of a final, most
accurate model for release as a software tool. I developed the code for the software tool which
is made available for public use at: https://github.com/gbgolding/crema. I wrote the first
version of this manuscript, which was edited and approved by E.A. Weretilnyk and G.B. Golding.
E.A. Weretilnyk and G.B. Golding supervised the analyses and writing of the manuscript.
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2.2 Abstract

Background: In plants, long non-protein coding RNAs are believed to have essential roles in
development and stress responses. However, relative to advances on discerning biological roles for
long non-protein coding RNAs in animal systems, this RNA class in plants is largely understud-
ied. With comparatively few validated plant long non-coding RNAs, research on this potentially
critical class of RNA is hindered by a lack of appropriate prediction tools and databases. Super-
vised learning models trained on data sets of mostly non-validated, non-coding transcripts have
been previously used to identify this enigmatic RNA class with applications largely focused on
animal systems. Our approach uses a training set comprised only of empirically validated long
non-protein coding RNAs from plant, animal, and viral sources to predict and rank candidate
long non-protein coding gene products for future functional validation.

Results: Individual stochastic gradient boosting and random forest classifiers trained on only
empirically validated long non-protein coding RNAs were constructed. In order to use the
strengths of multiple classifiers, we combined multiple models into a single stacking meta-learner.
This ensemble approach benefits from the diversity of several learners to effectively identify pu-
tative plant long non-coding RNAs from transcript sequence features. When the predicted genes
identified by the ensemble classifier were compared to those listed in GreeNC, an established
plant long non-coding RNA database, overlap for predicted genes from Arabidopsis thaliana,
Oryza sativa and Eutrema salsugineum ranged from 51 to 83% with the highest agreement in
Eutrema salsugineum. Most of the highest ranking predictions from Arabidopsis thaliana were
annotated as potential natural antisense genes, pseudogenes, transposable elements, or simply
computationally predicted hypothetical protein. Due to the nature of this tool, the model can
be updated as new long non-protein coding transcripts are identified and functionally verified.

Conclusions: This ensemble classifier is an accurate tool that can be used to rank long non-
protein coding RNA predictions for use in conjunction with gene expression studies. Selection
of plant transcripts with a high potential for regulatory roles as long non-protein coding RNAs
will advance research in the elucidation of long non-protein coding RNA function.

Keywords: lncRNA, classifier, machine learning, ensemble, transcript

2.3 Background

Long non-protein coding RNAs (lncRNAs) represent a diverse and functionally important class
of RNAs (Kung et al. 2013), and have been classically defined as transcripts longer than 200
nucleotides with little protein-coding potential (Kapranov et al. 2007). Previously thought to
be transcriptional noise, there is now evidence of their involvement in the development, disease,
and stress responses of plants (Wang et al. 2017; Xu et al. 2017b); however, these transcripts are
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also found throughout all kingdoms of life. LncRNA transcripts often lack sequence conservation
within close relatives, and the evolution of these transcripts remains poorly understood, but there
exists growing evidence of positional and structural conservation that may indicate selection on
transcript function (Hezroni et al. 2015).

Unlike other non-coding RNAs, the mechanisms and functions of lncRNAs can range wildly –
from epigenetic regulation, as exemplified by mouse Xist and human X-inactive specific transcript
(Xist) (Jeon and Lee 2011; Zhao et al. 2008), to small RNA target mimics, as seen with Induced
by Phosphate Starvation 1 (IPS1 ) and ath-miR399 in Arabidopsis thaliana cold assisted intronic
noncoding RNA (COLDAIR), a lncRNA associated with flowering, functions by remodeling
chromatin and alters expression of the FLC locus (He et al. 2013). A recent review by Ma
et al. (2013) suggests that most known lncRNAs regulate transcription, both in cis and trans,
while others can affect translation, splicing, post-translational regulation or are classified as
“other functional mechanisms.” Due to such a wide range of functionality, lncRNAs are typically
classified by their position to protein coding genes as intergenic (also referred to as lincRNAs),
natural antisense, or intronic (Kung et al. 2013; Ma et al. 2013).

Notably, lncRNAs can not only be functional in their long RNA form, but also act as small
RNA precursors and sources of small regulatory peptides (Anderson et al. 2015; Ji et al. 2015;
Juntawong et al. 2014) although extensive translation of lncRNAs has been disputed (Guttman
et al. 2013). Adding to the complexity of these RNAs, some transcripts do not meet the arbitrary
length cutoffs set by the classical definition for lncRNAs, such as Brain Cytoplasmic RNA 1 (BC1)
in mice (152nt) (DeChiara and Brosius 1987). Even with recent developments in sequencing
technologies, lncRNAs remain difficult to identify due to low, and condition-dependent and
tissue-dependent expression levels (Derrien et al. 2012). Demonstrating minimal homology with
close relatives (Hezroni et al. 2015), current research suggests these transcripts undergo fast
and unclear evolution making functional predictions challenging. This lack of distinct rules for
predicting and identifying lncRNAs is a likely contributor to the lack of validated plant lncRNAs.

Currently, many lncRNA prediction softwares that are available to researchers, such as PLEK
(Li et al. 2014), lncRScan-SVM (Sun et al. 2015), and COME (Hu et al. 2017), use machine learn-
ing methods trained on data consisting of lncRNA transcripts yet to be empirically validated.
Without empirical validation, many of these predicted lncRNA transcripts could have no regula-
tory function and could be produced due to spurious transcription because of the low fidelity of
RNApolII (Struhl 2007). In addition, CPAT (Wang et al. 2013a) and CPC2 (Kang et al. 2017)
are popular softwares used to identify non-coding transcripts. These softwares are successful
at quickly predicting the protein-coding potential of mRNA sequences, but are not specific to
lncRNAs and are unsuitable for identifying those lncRNAs that may code for small peptides.
Additionally, since the majority of lncRNA research is on animals, software packages for lncR-
NAs prediction often use only animal training datasets. While the exact functions of most plant
and animal lncRNAs remain poorly understood, there are known differences in biogenesis and
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mechanisms of other non-coding RNAs, such as miRNAs (Axtell et al. 2011). As such, ignoring
the few plant lncRNA transcripts with known function could hinder the potential of future plant
lncRNA predictors.

Depending on the source, lncRNA databases can also fall victim to biases toward animal
systems and non-validated transcripts as they are often model organism specific with a preference
for humans, and rarely differentiate between validated and predicted lncRNA transcripts. These
biases can be seen in the popular lncRNA databases, LNCipedia and NONCODE (Volders et al.
2013; Zhao et al. 2016).

Outputs from lncRNA software often result in thousands of unranked predictions leaving the
researcher to choose the most likely candidates for empirical validation. In combination with an
RNASeq experiment that can result in tens of thousands of transcripts, filtering through thou-
sands of lncRNA predictions can be difficult and time consuming for a researcher. Objectively
ranking predictions in combination with gene expression estimates can help researchers complete
functional validation of lncRNAs more efficiently.

Recently, ensemble methods have become popular for approaching difficult biological prob-
lems typically solved by machine learning (Liu et al. 2017a; You et al. 2013). Ensemble models
work by combining multiple learners into a single model which helps to avoid over fitting and
encourages generalization of the classifier. In addition to improved classification, ensemble meth-
ods also remove the difficulty in choosing the “best” model as all models can be used in a single
classifier. Each individual classifier used in the construction of the overall ensemble model will
have its own classification strengths, resulting in stronger and more accurate predictions when
these classifiers are used in combination.

Here we describe a lncRNA predictor constructed using an ensemble of machine learning
models developed for and tested on plant transcript sequences. We compared accuracy of this
meta-learner trained on multiple machine learning models to the prediction ability of individual
random forest and gradient boosting models making up the meta-learner. All models were
trained on empirically validated lncRNAs to ensure only true lncRNA transcripts were used
in each model’s training sets. We found the most successful method to be a stacking meta-
learner constructed from eight stochastic gradient boosting models. This approach offers multiple
advantages over those currently available as this machine learning approach prevents predictions
from being constrained to the arbitrary classic definitions of lncRNAs, such as ignoring transcripts
with high coding potential of small open reading frames (ORFs). In addition, our method
numerically scores each prediction to help researchers focus their validation efforts on highly
ranked lncRNA predictions. Finally, this approach uses the Diamond algorithm (Buchfink et al.
2015) that allows for efficient and fast sequence alignment in protein databases, an essential
feature for lncRNA prediction.
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2.4 Methods

2.4.1 Overview of classifiers

Multiple machine learning approaches to lncRNA prediction were compared to find the most
accurate plant transcript classifier. Ensemble approaches were chosen due to the diversity of
RNAs in the lncRNA category as these approaches are ideal for heterogeneous data. Ensem-
ble models typically follow three main approaches: bagging, boosting, and stacking. Bagging
(bootstrap aggregating) relies on creating n models on bootstrapped training data, and averages
predictions of all models for a final group prediction. This protocol is used in the random forest
method. With boosting, such as in gradient boosting, one iteratively trains n learners, with each
iteration attempting to reduce prediction error. The predictions are summed for a final classi-
fication. Finally, a stacking generalizer refers to training a new learner, for example by logistic
regression, on the output of multiple learners. This is commonly referred to as meta-learner.

This study used all three approaches to ensemble methods, firstly by evaluating the lncRNA
prediction accuracy of individual stochastic gradient boosting and random forest models. These
individual models were then also combined into four ensemble classifiers explained further in the
proceeding sections: 1. Arithmetic mean of scores, 2. Geometric mean of scores, 3. Majority
vote, 4. Logistic regression meta-learner, and were evaluated similarly.

2.4.2 Individual stochastic gradient boosting and random forest
models

Data

Positive data remained constant in each training set and consisted of a total of 436
unique, validated lncRNA sequences downloaded from two separate lncRNA databases:
1. lncRNAdb v2.0 (http://lncrnadb.org) on November 25, 2016 and 2. lncRNAdisease
(http://www.cuilab.cn/lncrnadisease) on February 15, 2017. These sources for lncRNA se-
quences include all available validated lncRNAs, but are heavily populated by animal systems
and include only six plant lncRNA sequences.

Negative data for each training set consisted of sequences from four different species: Homo
sapiens, A. thaliana, Mus musculus, and Oryza sativa. H. sapiens and M. musculus sequences
were included in the negative data of the training set as these species are the source for the
majority of validated lncRNAs. H. sapiens sequences were downloaded from Ensembl ( http:

//www.ensembl.org) on December 19, 2016, A. thaliana from Araport v11 ( https://www.

araport.org) on December 16, 2016, M. musculus from Ensembl on March 28, 2017 and
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O. sativa from Ensembl on March 28, 2017. These data are made available in Supplemental
File 2. To ensure that lncRNA, tRNAs, and rRNAs were removed from the negative training
data, these types of sequences were downloaded from RNAcentral v6 ( http://rnacentral.org)
on March 28, 2017, using search terms available in Supplemental File 1 and were then removed
from the dataset. Eight different training sets with different combinations of negative data from
multiple species were used to construct eight different models and are described in Table 2.1.
Sets denoted “A” and “B” remained constant throughout the training sets and were randomly
chosen from the transcript sequences of each species. These training datasets were used in both
random forest and gradient boosting methods, for a total of 16 preliminary models. The variety
of training datasets was used to maximize model diversity, a requirement for the proceeding
ensemble models.

Feature extraction and selection

Eleven features were chosen for use in model construction:

1. mRNA length

2. ORF length

3. GC%

4. Fickett score

5. hexamer score

6. alignment identity in SwissProt database

7. length of alignment in SwissProt database

8. proportion of alignment length and mRNA length (alignment length:mRNA length)

9. proportion of alignment length and ORF length (alignment length:ORF)

10. presence of transposable element

11. sequence percent divergence from transposable element

Features were extracted using a combination of custom Python scripts and known software
(CPAT (Wang et al. 2013a) used for features 4 and 5, Diamond (Buchfink et al. 2015) used for
features 6, 7, 8, 9, RepeatMasker (Smit et al. 2015) used for features 10 and 11.)

30

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://rnacentral.org


D
octor

ofPhilosophy
–
C
aitlin

Sim
opoulos;M

cM
aster

U
niversity

–
D
epartm

ent
ofB

iology

Table 2.1: Negative training data sets in individual models, and corresponding accuracy, sensitivity, specificity and AUC
values.

Training dataset Negative data AUC Accuracy Specificity Sensitivity
GB RF GB RF GB RF GB RF

1 3000 H. sapiens (set A) 0.940 0.943 0.962 0.956 0.988 0.990 0.548 0.404
1000 M. musculus (set A)
3000 O. sativa (set A)

2 3000 H. sapiens (set A) 0.943 0.944 0.960 0.953 0.988 0.989 0.576 0.461
3000 O. sativa (set A)

3 3000 H. sapiens (set A) 0.961 0.962 0.973 0.970 0.990 0.992 0.693 0.592
1000 M. musculus (set A)
3000 A. thaliana (set A)

4 3000 H. sapiens (set A) 0.962 0.966 0.972 0.967 0.990 0.990 0.725 0.640
3000 A. thaliana (set A)

5 3000 H. sapiens (set B) 0.955 0.959 0.965 0.958 0.991 0.980 0.608 0.530
3000 A. thaliana (set B)

6 4500 H. sapiens (set A + 1500 seq) 0.961 0.967 0.979 0.979 0.995 0.995 0.633 0.571
4500 A. thaliana (set A + 1500 seq)

7 3000 H. sapiens (set A) 0.963 0.967 0.976 0.971 0.993 0.992 0.700 0.603
4500 A. thaliana (set A + 1500 seq)

8 2000 H. sapiens (2000 from set A) 0.964 0.965 0.968 0.965 0.988 0.990 0.695 0.619
1000 M. musculus (set A)
3000 A. thaliana (set A)

Training datasets of random forest (RF) and gradient boosting (GB) individual models are described. The positive training
dataset, 436 validated lncRNAs, remained constant throughout all training datasets. Specificity, sensitivity, accuracy and
AUC values were found using 10-fold cross validation of all training data.

31

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy – Caitlin Simopoulos; McMaster University – Department of Biology

CPAT model creation and application
As no publicly available plant CPAT model exists, two logit models were built using coding
and non-protein coding RNA sequences from A. thaliana and O. sativa. Non-coding lncRNA,
miRNA, snRNA, and snoRNA sequences from each species were downloaded from the Plant
Non-coding RNA Database on September 26, 2016 (A. thaliana, 5062 sequences total) and July
14, 2017 (O. sativa, 4718 sequences total) (Yi et al. 2015). Protein coding transcript sequences
from each species were downloaded from Phytozome v11 (Goodstein et al. 2012) on August 3,
2016. In order to supply a balanced training set, 5938 A. thaliana and 5283 O. sativa protein
coding sequences were randomly selected for a total of 11,000 A. thaliana transcripts and 10,000
O. sativa transcripts for CPAT model construction. A. thaliana CPAT models were used for
predictions in all species but A. thaliana itself, which used O. sativa CPAT models. Fickett and
hexamer values from CPAT results were used as features in machine learning model construction.

Diamond alignment in SwissProt database
Diamond v0.8.34 (Buchfink et al. 2015) was used to quantify transcript sequence alignments to
curated protein sequences in the SwissProt database (Bairoch and Apweiler 2000) downloaded
February 1, 2017 from http://www.uniprot.org/downloads. We ran Diamond in “more-sensitive”
mode as we aligned full transcript sequences to the SwissProt database rather than RNASeq
reads. Options for each Diamond run were as follows: -e 0.001, -k 5, --matrix BLOSUM62,
--gapopen 11, --gapextend: 1, -f 6 qseqid pident length qframe qstart qend sstart send evalue
bitscore.

RepeatMasker
RepeatMasker (Smit et al. 2015) was used to extract information on transcription element related
features. The software was run on transcript sequences using default settings, and with -species

set to Eukaryota.

Stochastic gradient boosting and random forest model construction and
hyper-parameter selection

Once features were extracted, models were constructed using Python’s scikit-learn package (Pe-
dregosa et al. 2011). Eight separate models were constructed using both gradient boosting and
random forest approaches, for a total of 16 models differing in negative training data or machine
learning algorithm (Table 2.1). All transposable element related features were removed after
performing recursive feature elimination as they were found to be uninformative and reduced
the accuracy of models. With the 9 remaining features, a nested 4-fold cross-validation grid
search was performed for 30 trials in gradient boosting hyper-parameter selection with possible
hyper-parameters:

• learning_rate: 0.02, 0.04, 0.06, 0.08, 0.1
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• max_depth: 4, 6, 8, 10

• subsample: 0.2, 0.4, 0.6, 0.8, 1

• n_estimators: 100, 500, 1000

Random forest hyper-parameters remained constant through all models with the only change
from default parameters being n_estimators = 5000 and min_samples_leaf = 20.

Models were evaluated by sensitivity, specificity, accuracy area under the curve (AUC) values
using 10-fold cross validation and the caret R package (Jed Wing et al. 2017).

2.4.3 Ensemble learner construction

As gradient boosting and random forest models 1-8 were trained using eight different negative
training sets, 3000 randomly selected Zea mays protein coding sequences were used as negative
data in the construction and/or testing of each ensemble model for consistency through models.
Z. mays was chosen as no training set contained sequences from this species and the genome is well
annotated. Z. mays transcripts were downloaded from EnsemblPlants on April 27, 2017. Two
separate values were used for the creation of each ensemble model – scores sij and predictions
pij where i represents model number and j transcript. Scores can take any number between
0 and 1, while predictions are binary and indicate if the transcript was or was not predicted
as a lncRNA. A score greater than or equal to 0.5 would indicate the transcript is predicted
as a lncRNA and would have a prediction value of 1. Ensemble models were constructed for
random forest and gradient boosting models separately in order to avoid potential correlation
of predictions. The four ensemble approaches included both algebraic combiners and voting
methods as non-trainable methods, and a stacking generalizer as a meta-learner.

The four ensemble methods are described as follows and are illustrated in Figure 2.1:

1. Arithmetic Mean

1
n

n∑
i=1

sij (2.1)

Where n = 8, the number of individual models combined into the ensemble approach. The
ensemble decision is made from taking the arithmetic mean of each score sij from models
1-8 for each gene j. The arithmetic mean of scores will act as a new ensemble score, and
prediction will be made as described previously.

2. Geometric mean ( n∏
i=1

sij

) 1
n

(2.2)
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Where n = 8, the number of individual models combined into the ensemble approach. The
ensemble decision is made from taking the geometric mean for each score sij from models
1-8 for each gene j. The geometric mean of scores will act as a new ensemble score, and
prediction will be made as described previously.

3. Majority vote

1
n

n∑
i=1

pij (2.3)

Where n = 8, the number of individual models combined into the ensemble approach. The
ensemble decision depends only on final predictions and is decided on which label (0 or
1) receives the largest vote. The final prediction is made depending on the value of the
majority vote score.

4. Logistic regression

This meta learner is trained on a training dataset of 3000 known Z. mays protein coding
sequences as negative data and the 10-fold cross validation prediction outputs of known
lncRNAs as positive data.

Voting, arithmetic mean, and geometric mean ensemble models were evaluated by directly
comparing scores of predictions to the known outcomes of validated lncRNAs and 3000 Z. mays
protein coding sequences. The logistic regression stacking generalizer was evaluated by 10-fold
cross validation. Accuracy, sensitivity, specificity, Matthews correlation coefficient (MCC), and
AUC values were calculated using a custom R script and the R package caret (Jed Wing et al.
2017).

2.4.4 Comparison of predicted lncRNAs to GreeNC and annotation
exploration

Transcript sequences of O. sativa and Eutrema salsugineum were downloaded from Phytozome
v10.3 and A. thaliana from TAIR10 for direct comparison to GreeNC. LncRNAs predictions
by GreeNC of A. thaliana, O. sativa and E. salsugineum were downloaded on June 19, 2017.
Annotations from each species were downloaded from Phytozome v12, with extra A. thaliana
annotation downloaded from Araport v11.
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Scores, sij

Model i Gene A Gene B Gene C

1 0.005 0.962 0.001
2 0.004 0.920 0.002
3 0.005 0.199 0.001
4 0.151 0.228 0.009
5 0.177 0.841 0.009
6 0.146 0.144 0.007
7 0.003 0.204 0.001
8 0.005 0.190 0.002

Predictions, pij

Model i Gene A Gene B Gene C

1 0 1 0
2 0 1 0
3 0 0 0
4 0 0 0
5 0 1 0
6 0 0 0
7 0 0 0
8 0 0 0

Model 8

Model 7

Model 6

Model 5

Model 4

Model 3

Model 2

Model 1 1. Mean

8∑
i=1

sij

8

Gene A = 0.009

Gene B = 0.461

Gene C = 0.004

2. GeoMean

(
8∏

i=1
sij)

1
8

Gene A = 0.007

Gene B = 0.342

Gene C = 0.003

3. Vote

8∑
i=1

pij

8

Gene A = 0

Gene B = 0.375

Gene C = 0

4. Stacking generalizer
Gene A = 0.034

Gene B = 0.992

Gene C = 0.034

1

Figure 2.1: Illustration of ensemble methods. An illustrative example
of all four ensemble methods: arithmetic mean, geometric mean, majority vote
and the stacking generalizer. Real examples from three different genes are
given: gene A represents AT5G44470 a predicted protein, gene B represents
At43G09922.1 IPS1 a known lncRNA, and gene C represents At2G18130.1 a
known protein coding gene, AtPAP11. Note the final stacking generalizer score
of gene B compared to the individual model scores for the gene.
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2.5 Results

2.5.1 Individual random forest and stochastic gradient boosting
model construction

Feature selection

Researchers have proposed that specific characters in transcript sequences can be useful in
lncRNA classification. For example, lncRNAs can be translated into short peptides (Ander-
son et al. 2015; Ji et al. 2015; Juntawong et al. 2014), however most validated lncRNAs remain
functional in their RNA form with little protein coding potential. The potential for a transcript
to be translated into a protein can be predicted by codon bias, often measured by Fickett score
and hexamer usage bias (Wang et al. 2013a). Mammalian lncRNAs are known to have a lower GC
content than protein-coding RNAs (Niazi and Valadkhan 2012), and this feature has been used as
a defining feature for A. thaliana lncRNA prediction in the past (Di et al. 2014). Transposable el-
ements (TEs) are also known to be sources for plant lncRNAs (Wang et al. 2017). Based on these
studies, 11 features were originally chosen for use in lncRNA classification: mRNA length, ORF
length, GC%, Fickett score, hexamer score, alignment identity in SwissProt database, length of
alignment in SwissProt database, proportion of alignment length and mRNA length (alignment
length:mRNA length), proportion of alignment length and ORF length (alignment length:ORF),
presence of transposable element, and sequence percent divergence from transposable element.
Using recursive feature elimination as described in Section 2.4, features that related to transpos-
able elements were removed since inclusion of these features in classifiers decreased prediction
accuracy and thus were deemed uninformative for this training data. After feature elimination,
nine features were chosen for implementation in individual random forest and gradient boosting
models: mRNA length, ORF length, GC%, Fickett score, hexamer score, alignment identity,
length of alignment, alignment length:mRNA length, and alignment length:ORF.

Individual model configuration and model evaluation

Gradient boosting and random forest models were constructed using eight different negative train-
ing datasets for a total of sixteen models (Table 2.1). Empirically validated lncRNA transcripts
were downloaded from databases as described in Section 2.4. To ensure optimal performance of
each gradient boosting classifier, proper calibration of multiple hyper-parameters is required. As
such, hyper-parameter tuning (learning_rate, max_depth, subsample, and n_estimators) for
each gradient boosting model was completed by grid search and 30 iterations of 4-fold nested
cross validation with results summarized in Table 2.2. All random forest models were constructed
with the same hyper-parameters; all options were left as default other than n_estimators=5000

and min_samples_leaf = 20.
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Table 2.2: Gradient boosting hyper-parameters chosen by grid search for each
model.

GB Model # Learning rate maxdepth subsample n estimators
1 0.04 10 0.6 100
2 0.04 10 0.6 100
3 0.04 10 0.6 100
4 0.02 8 0.6 100
5 0.02 10 0.6 100
6 0.02 10 0.6 100
7 0.04 10 0.6 100
8 0.04 10 0.6 100

Hyper-parameters were chosen by grid search using 30 iterations of 4-fold nested
cross validation. The given hyper-parameters corresponded to models with the
highest accuracy values of all given hyper-parameter combinations.

After training calibrated models, gradient boosting and random forest models were evaluated
individually by 10-fold cross validation by accuracy, specificity, sensitivity and AUC measures for
model validation (Table 2.1). All models performed at or above accuracy, specificity and AUC
measures of 0.94, however, sensitivity values ranged from 0.40 to 0.725 (Table 2.1). Because
of this wide range of sensitivity values, four alternative ensemble approaches using combined
random forest and gradient boosting models were explored.

2.5.2 Ensemble classifier construction

To take advantage of the predictive strengths of each random forest and gradient boosting model,
ensemble learners for all random forest and all gradient boosting models were constructed. As
ensemble classifiers function by combining “diverse” learners (Brown et al. 2005), only models
constructed from different training sets were used in each ensemble classifier to maintain diversity
in predictors. In other words, ensemble classifiers were constructed from all eight random forest
models and a separate set of ensemble classifiers were constructed from all eight gradient boosting
models.

Four types of ensemble classifiers were constructed: a majority vote model, arithmetic means
of scores model, geometric means of scores model, and a stacking ensemble model constructed
from a logistic regression of model outputs (Figure 2.1 and Section 2.4 for details).

A final training set comprised of 3000 known Z. mays protein coding genes and validated
lncRNAs was created. This Z. mays training data set was used for training the logistic regression
classifier because random forest and gradient boosting models were trained on different data sets
(see Section 2.4). For consistency, all four ensemble methods were also evaluated using these
data. The arithmetic mean, geometric mean, and majority vote methods were evaluated by
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Table 2.3: Evaluation of random forest (RF) and gradient boosting (GB)
ensemble models

ML model type Ensemble type AUC MCC Accuracy Sensitivity Specificity
RF

Vote 0.834 0.725 0.944 0.594 0.995
Arithmetic Mean 0.963 0.661 0.941 0.562 0.996
Geometric Mean 0.963 0.706 0.941 0.555 0.997
Logistic regression 0.835 0.765 0.952 0.665 0.994

GB
Vote 0.887 0.797 0.958 0.702 0.995
Arithmetic Mean 0.945 0.786 0.956 0.681 0.996
Geometric Mean 0.940 0.750 0.949 0.601 0.999
Logistic regression 0.883 0.822 0.963 0.745 0.994

Statistics for vote, arithmetic mean, and geometric mean models were calculated
using outputs of models compared to true labels. Logistic regression evaluation
statistics were calculated using the scores found by 10-fold cross validation of
O. sativa training data and validated lncRNA sequences.

comparing ensemble method outputs to true labels, and 10-fold cross validation scores were used
to evaluate the logistic regression stacking model. Accuracy, specificity, and AUC values were
similar for all ensemble approaches; therefore, the best performing ensemble method was largely
determined by both sensitivity and MCC measures (Table 2.3). Using these values as methods
of evaluation, the stacking model constructed from gradient boosting model outputs was found
to be the best performing model and was used for the remainder of the study.

2.5.3 Comparison of meta-learner to GreeNC predictions

To assess the overlap of predictions to another plant lncRNA resource, the lncRNAs predicted by
the stacking generalizer were compared to an established lncRNA database, GreeNC (Paytuvi-
Gallart et al. 2016). This database uses a transcript filtering method, rather than a machine
learning approach, where transcripts must meet the criteria of a classic lncRNA in order to
be identified as putative lncRNAs. To be considered a lncRNA in the GreeNC database, the
transcript must: be larger than 200nt, have an ORF smaller than 120aa, not have a hit in the
SwissProt database or be considered non-coding by the Coding Potential Calculator (Kong et al.
2007), and not be already classified as another class of functional RNA as identified by Rfam.

Transcript sequences of O. sativa, and E. salsugineum were downloaded from Phytozome
v10.3 and A. thaliana sequences from TAIR10 to enable direct comparison to the GreeNC pro-
tocol. In total, 1310, 856 and 198 lncRNAs were predicted from A. thaliana, O. sativa, and
E. salsugineum respectively, of which 872 (66.6%), 444 (51.9%), and 164 (82.8%) have been pre-
viously predicted by GreeNC (Figure 2.2). Comparing number of predicted lncRNAs using this

38

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy – Caitlin Simopoulos; McMaster University – Department of Biology

method to GreeNC, 1700, 4381, and 1471 fewer lncRNAs are identified in A. thaliana, O. sativa
and E. salsugineum using the stacking method. Another 438, 412 and 34 putative lncRNAs were
identified using the stacking learner that have not been predicted by GreeNC in A. thaliana,
O. sativa, and E. salsugineum.
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Figure 2.2: Counts of predicted lncRNAs in A. thaliana, E. salsug-
ineum and O. sativa from the gradient boosting stacking generalizer
method and GreeNC database. Counts of predicted lncRNAs in this work
from all three species were also compared to predictions recorded in GreeNC.
Overlapping predictions of the two methods are represented as shaded bars.
The percentages above each bar represent the percent of the total predictions
by each method that are shared

Current annotation of top ranking lncRNAs in A. thaliana, E. salsugineum, and
O. sativa

Using the prediction scoring system of this stacking method, the current annotation of the highest
ranking lncRNAs from each species was explored. Due to the nature of a logistic regression-type
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ensemble method, transcripts with similar features will have identical prediction scores. As
such, multiple prediction score ties exist in the top ranking transcripts of each species (See A,
Figure S1.1, Table S1.1 for distribution of lncRNA scores). Using a cutoff of the top three
unique prediction scores, annotations of 256, 17 and 94 transcripts in A. thaliana, E. salsug-
ineum, and O. sativa were identified as “top scoring” due to these multiple ties. The majority
of predicted lncRNAs in A. thaliana were annotated by TAIR as potential natural antisense
lncRNAs, pseudogenes, and transposable element related genes (Table 2.4). Only one transcript
from E. salsugineum’s top predictions, and two transcripts from O. sativa’s top predictions have
annotation in Phytozome v12.

Table 2.4: Number of transcripts in annotation categories of top ranking lncR-
NAs in the A. thaliana transcriptome.

Annotation category Number of annotations
Natural antisense
lncRNA 64

Pseudogene 75
Transposable element
gene 10

Transposase 46
miRNA primary
transcript 4

Hypothetical protein 5
Protein 8
Other 8

Novel lncRNAs identified by the stacking generalizer

Annotation of the predicted lncRNAs not previously identified by GreeNC from all three species
were explored. While all of the newly predicted lncRNAs from E. salsugineum and O. sativa
were annotated as homologs of A. thaliana genes, 10 of 34 novel lncRNAs from E. salsugineum
and 11 of 412 novel lncRNAs from O. sativa were annotated specifically as proteins. Of the
newly predicted lncRNAs from A. thaliana, 417 remain unannotated, with only seven predicted
as potential proteins.

2.6 Discussion

Our approach to lncRNA prediction by stacking with logistic regression allows researchers to
combine the strengths of various machine learning models without restricting predictions to
arbitrary feature cutoffs of a classic lncRNA definition. The flexible nature of this lncRNA
prediction tool allows the model to be updated when additional lncRNAs are validated, helping

40

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy – Caitlin Simopoulos; McMaster University – Department of Biology

researchers focus on empirical validation of plant lncRNA transcripts. As lncRNA research has
previously primarily focused on animal systems with a large emphasis on humans and mice, this
tools’ training sets may have a human and mouse bias that is present out of necessity. When
more plant lncRNAs are added to the tool’s training set, the human and mouse lncRNA bias
that may be found in the model will be reduced. Acting as positive feedback, as more plant
lncRNAs are added to the model, the predictions themselves will improve.

To help researchers choose the best lncRNAs for validation, the predictions are ranked. While
softwares that rank lncRNA predictions, such as COME exist (Hu et al. 2017), they are trained on
a majority of non-empirically validated transcripts adding a potential bias towards non functional
transcripts. A combination of ranked predictions and models trained only on true lncRNAs will
help ensure researchers focus on the most likely functional lncRNAs

A lower number of identified lncRNAs in comparison to other prediction methods, such as
GreeNC, was expected. Using a machine learning classification method, lncRNA predictions
were not constrained to arbitrary criteria for this RNA classification. Instead, the classifiers
were trained on validated lncRNAs and are expected to identify only true functional lncRNA
transcripts. In other words, although transcripts were subjected to less rules for lncRNA identi-
fication, the stacking method is expected to have higher accuracy. Further, this work was tested
only on sequence information available from Phytozome v10.3 in order to compare predictions
directly to GreeNC. Additional transcript sequences available in public repositories, or from re-
searchers’ own sequencing libraries, would add to the number of putative lncRNAs and could be
used to improve accuracy. Moreover, COOLAIR and COLDAIR, known A. thaliana lncRNAs,
are not predicted by GreeNC because the database relies on transcript sequences provided by
Phytozome and these transcript sequences were not available in the database at the time of
prediction. Our stacking generalizer method for lncRNA prediction is not restricted to a single
data source, and allows researchers to calculate a lncRNA score from any transcript sequence,
not solely those available from an online repository.

While we expect a lower number of putative lncRNAs than other protocols, of interest is the
lower proportion of predicted lncRNAs in the E. salsugineum genome compared to O. sativa or
A. thaliana. A reason for the low lncRNA discovery rate in E. salsugineum, could potentially
be that plants were not subjected to conditions sufficient for observable lncRNA expression. For
example, IPS1 (Franco-Zorrilla et al. 2007) and COLDAIR (He et al. 2013), two well studied
A. thaliana lncRNAs, are induced by phosphate or cold-related stresses respectively. This hy-
pothesis is supported by Derrien et al. (2012) who found human lncRNA expression to be at low
levels in a condition, tissue and developmental state specific manner. It is also possible that there
exists natural variation in the numbers of putative lncRNAs in different species. Further inves-
tigation on the number of putative lncRNA and their relationships to plant growth conditions
for transcriptome sequencing of multiple plant species is currently underway.
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Although the quantity of detected lncRNAs was low in E. salsugineum, the quality of pu-
tative lncRNAs in all three species is high, demonstrating that this tool can accurately classify
transcripts no matter size or quality of input transcript sequence data. When exploring the anno-
tations of the top scoring predictions in A. thaliana, the majority of transcripts were annotated
as potential natural antisense lncRNA, pseudogenes, transposable elements, small RNA primary
transcripts, or remain computationally predicted as hypothetical proteins (Table 2.4). Pseu-
dogenes remain poorly understood, however there is evidence of pseudogene derived lncRNAs
regulating their parental genes (Milligan and Lipovich 2014), making pseudogene derived lncR-
NAs targets of potential regulatory interest. Transposable elements are another known source
of lncRNAs, particularly in vertebrates (Kapusta et al. 2013) and long intergenic non-protein
coding RNAs in plants (Wang et al. 2017). This study did not find evidence that features related
to transposable elements were helpful at predicting plant lncRNAs as the addition of transpos-
able related features decreased the quality of lncRNA predictions. However, exploration of the
training data used for model creation indicates that only 19 of the 436 (4.4%) validated lncRNAs
show evidence of transposable element association. Of this minor group of transposable element
associated lncRNAs, none were from plant species. Nonetheless, the tool did not favour lncRNAs
that are not associated with transposable elements, as the tool remained successful at identifying
these types of transcripts. Additionally, as novel lncRNAs are validated and added to this tool,
an update to the models’ feature selection step may be required, and may lead to future inclusion
of transposable element associated characters. However, by not including transposable element
information, the computational time for data preprocessing before transcript classification is
significantly reduced to minutes from days as RepeatMasker is no longer needed.

Features of secondary RNA structure have previously been used in other RNA classifiers, such
as nRC (Fiannaca et al. 2017) and GraPPLE (Childs et al. 2009), that are used to classify RNAs
into functional categories. These classifications include RNAs such as miRNAs, tRNAs, rRNA,
ribozymes, and riboswitch domains, all of which have conserved secondary structures. Rather
than using sequence homology, commonly used with protein coding genes, structural homology
has previously been used in lncRNA functional prediction, and identification (Hezroni et al.
2015). However, a lack of secondary structure conservation in animal lncRNAs with conserved
sequences (e.g. HOTAIR, ncSRA and Xist) was recently observed (Rivas et al. 2017). As struc-
tural conservation may not be as pervasive in lncRNA classification as previously thought, we did
not include structural features in our ensemble learner. A lack of structural features allows the
predictor to identify a wide variety of lncRNAs and does not limit the predictor to the structures
of the small number of validated plant lncRNAs available. An additional test was completed
to ensure our predictor, lacking structural features, did not merely distinguish non-coding tran-
scripts from protein coding genes. By comparing the results of the ensemble learner to predicted
CPAT protein coding probabilities (Wang et al. 2013a), our ensemble method was able distin-
guish between other CPAT-predicted non-coding transcripts and likely lncRNAs (Appendix A,
Figure S1.2). A portion of putative lncRNAs in all three plant species are also predicted to be
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protein coding and may encode small regulatory peptides.

High quality lncRNA predictions from this method require sequences from fully processed
transcripts and cannot be predicted directly from genomic sequences. Nevertheless, potential
lncRNA sequences of interest are typically more accessible by transcriptome sequencing rather
than complete genome sequencing, which remains technically challenging for crop plants with
large and/or polyploid genomes. This tool is flexible and can be used to identify lncRNAs from
all transcriptional units of an organism, or to check the lncRNA score of a single transcript.
Furthermore, as mentioned in their summary, Kang et al. (2017) suggest that researchers should
now consider working on uncovering the biological implications of lncRNAs rather than solely
using computational tools for transcript classification. We agree that future work should centre
around using software to also further knowledge on these types of transcripts. Due to the diversity
of these transcripts, there is increasing need for classification of lncRNAs into categories based on
mechanism and function, as well as continuation of empirical validation, particularly for plants.
Once validated, not only can novel lncRNAs mechanisms be explored, but their features can be
added to this tool for further improvement in lncRNA prediction.

2.7 Conclusion

For this machine learning based tool for lncRNA prediction, we have used only empirically
validated lncRNAs for training. Although lncRNAs from multiple species were used, our tool
identified putative plant lncRNAs with high scores. Ranking of lncRNA predictions should
improve the confidence by which gene products meriting validation are selected for empirical
testing. The machine learning structure and its open source availability allows for the flexible
inclusion of validated lncRNAs as our knowledge of this class of RNA improves. An important
consideration of this tool is that it is not constrained by preconceived rules that may or may
not appropriately classify lncRNA properties. As Kung et al. (2013) suggest, setting rules for
the detection of these non-conforming transcripts could be detrimental due to the diversity in
functionality, structure, expression and mechanism of these transcripts. Accordingly, our stacking
generalizer model based on gradient boosting models will facilitate lncRNA identification without
imposing arbitrary rules for lncRNA detection.
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3.1 Preface

Chapter 3 describes how the long non-protein coding RNA (lncRNA) prediction tool (as described
in Chapter 2) can be applied to comparative evolutionary studies. Using RNA sequencing data
gathered from the Sequence Read Archive (SRA), we predicted lncRNAs from evolutionarily
diverse plant species that were grown under ideal conditions without exposure to stress. We
explored the contributions of lncRNAs to the genomes of the tested species by quantifying pre-
dicted lncRNA numbers that were represented in available reference annotations. This work
also contributes to knowledge on lncRNA evolution by estimating phylogenetic signal in select
molecular features of lncRNAs. Chapter 3 was submitted on January 9, 2019 for consideration
of publication in G3.

I made significant contributions to this study. I jointly conceived of the experiment with
E.A. Weretilnyk and G.B. Golding. I gathered data, mapped reads, assembled transcripts and
predicted lncRNAs and completed all consequent statistical and evolutionary analyses. I wrote
the first version of the manuscript which was edited and approved by E.A. Weretilnyk and
G.B. Golding. E.A. Weretilnyk and G.B. Golding supervised the analyses and writing of the
manuscript.
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3.2 Abstract

Long non-coding RNAs (lncRNAs) represent a diverse class of regulatory loci with roles in de-
velopment and stress responses throughout all kingdoms of life. LncRNAs, however, remain
under-studied in plants compared to animal systems. To address this deficiency, we applied a
machine learning prediction tool, Classifying RNA by Ensemble Machine learning Algorithm
(CREMA), to analyse RNAseq data from 11 plant species chosen to represent a wide range of
evolutionary histories. Transcript sequences of all expressed and/or annotated loci from plants
grown in unstressed (control) conditions were assembled and input into CREMA for comparative
analyses. On average, 6.4% of the plant transcriptomes were identified by CREMA as encod-
ing lncRNAs. Gene annotation associated with the transcripts showed that up to 99% of all
predicted lncRNAs for Solanum tuberosum and Amborella trichopoda were missing from their
reference annotations whereas the reference annotation for the genetic model plant Arabidopsis
thaliana contains 96% of all predicted lncRNAs for this species. Thus a reliance on reference
annotations for use in lncRNA research in less well-studied plants can be impeded by the near
absence of annotations associated with these regulatory transcripts. Moreover, our work sug-
gests that molecular traits of plant lncRNAs display different evolutionary patterns than all other
transcripts in plants and have molecular traits that do not follow a classic evolutionary pattern
as suggested by phylogenetic signal analysis. Specifically, GC content was the only tested trait of
lncRNAs with significant high phylogenetic signal, contrary to high signal in all tested molecular
traits for other transcripts in our tested plant species.

Keywords: lncRNA, CREMA, phylogenetic signal, molecular traits, transcriptome, RNASeq,
annotation, evolution

3.3 Introduction

Long non-protein coding RNAs (lncRNAs), a heterogeneous class of regulatory transcripts, re-
main greatly understudied in plant species. Although these transcripts have been implicated in
development and stress responses of plants, only 13 of these transcripts have been empirically
functionally characterized to date (Wang and Cheksnova 2017; Nejat and Mantri 2018; Zhao
et al. 2018b). While researchers often focus on computational prediction of these transcripts,
particularly lncRNAs expressed under stressful conditions, biological insights on the evolution,
mechanisms and function of lncRNAs remain uncertain.

Simopoulos et al. (2018) reported that the genome of Eutrema salsugineum, an extremophile,
contains a lower proportion of putative lncRNAs in comparison to the genome of model plants
Arabidopsis thaliana and Oryza sativa. A lower number of predicted lncRNAs in E. salsugineum
is surprising due to the naturally high capacity of this species to tolerate extreme environmental
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conditions (Champigny et al. 2013; Kazachkova et al. 2018) and the oft-cited association between
expressed lncRNAs and stress responses (Wang et al. 2017; Xu et al. 2017b). E. salsugineum’s
unexpectedly low number of predicted lncRNAs compared to its close and more stress sensitive
relative, A. thaliana, leads to questions of potential natural variation in lncRNA number. How-
ever, the differences in predictions of lncRNAs in these species may be due to data availability as
few plant species have had their reference annotation updated regularly in genomic databases.
For example, novel gene information has yet to be updated for E. salsugineum since the official
reference genome was released in 2013 (Yang et al. 2013) although Champigny et al. (2013) pre-
sented an additional 665 transcriptional units for which the reference genome had no annotation.
Recently, Yin et al. (2018) have added to the number of novel transcripts in E. salsugineum
with evidence of expression of an additional 65 transcripts with neither update available in the
reference annotation of E. salsugineum.

LncRNAs may be missing from genome annotations because they are difficult to identify due
to their low, tissue- and condition-dependent expression (Derrien et al. 2012). Further, contrary
to protein-coding genes and other non-coding loci, the evolution of lncRNAs is not well under-
stood. Limited nucleotide conservation has been identified in mammalian lncRNAs (Hezroni et
al. 2015), and structural conservation remains controversial (Rivas et al. 2017). Instead of using
homology, distinguishing traits such as transcript length (Kapranov et al. 2007), open reading
frame (ORF) ,or lack of, length (Kapranov et al. 2007), GC content (Niazi and Valadkhan 2012),
and number of exons in a transcript (Derrien et al. 2012), are often used in lncRNA prediction
studies. Detected phylogenetic signal in traits of transcripts, rather than sequence homology,
can indicate that trait values follow the expected evolutionary patterns of tested species. For ex-
ample, high phylogenetic signal implies traits are more similar in closely related species, whereas
low phylogenetic signal suggests the opposite: less similarity in tested traits than expected in
closely related species. Identifying which evolutionary process may be influencing a significant
phylogenetic signal is complex and many different processes are associated with both high or low
signal estimates (Revell et al. 2008).

High phylogenetic signal detected using a signal estimation method that considers evolution
following a random walk, as in Brownian motion, can be observed in both natural selection and
genetic drift scenarios (Revell et al. 2008). Conversely, low detected phylogenetic signal can be
inferred as the lack of similarity in tested traits, as opposed to divergence of traits, and is common
in adaptive radiation or other fast adaptive processes (Kamilar and Cooper 2013). Data that fit
an Ornstein-Uhlenbeck process, however, suggest an adaptive process. First described by Hansen
(1997), the Ornstein-Uhlenbeck process allows for a random walk, similar to Brownian motion,
but also for species to evolve towards an adaptive peak or fitness optimum. Furthermore, local
estimates of Moran’s I, based on the concept of spatial autocorrelation, estimate phylogenetic
signal throughout evolutionary time. Positive autocorrelation indicates similarity of trait values
at a given phylogenetic distance, while negative autocorrelation suggests dissimilarity at a given
phylogenetic distance. Diniz-Filho (2001) has shown, however, that it is the changes in local
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autocorrelation over phylogenetic distance beyond a significance threshold that may be influenced
by evolutionary processes. A trait following an Ornstein-Uhlenbeck adaptive process would have
a reduced phylogenetic distance at which I crosses the threshold of no significant autocorrelation,
also called a “phylogenetic patch”, compared to a trait following the Brownian motion model of
evolution.

In this study, we predicted lncRNAs from transcriptomes of 11 plant species with widely dif-
ferent evolutionary histories. Transcripts were assembled from RNASeq data without restriction
of existing reference annotation in order to obtain a representation of all expressed loci in each
study without reliance on accompanying known transcriptional units. Transcript sequences were
then input into CREMA (Simopoulos et al. 2018) for accurate lncRNA prediction and ranking.
Following lncRNA prediction, we observed that up to 99% of predicted lncRNAs may not be
present in their corresponding reference annotation. Thus, we caution that researchers should not
rely only on publicly available annotation for lncRNA research. Finally, as there has been little
evidence for sequence conservation in lncRNAs between species in different families (Nelson et al.
2016), a phylogenetic signal was not expected in the distinguishing molecular traits of lncRNAs,
such as transcript length and GC content. However, our comparative study detected a consis-
tently high phylogenetic signal in GC content of lncRNAs with no conservation found for the
other traits tested in these regulatory transcripts. In particular, GC content differences relative
to protein-coding RNA represents a trait that could help researchers distinguish putative func-
tional lncRNAs from non-functional and spurious transcription, or fragmented protein-coding
RNAs.

3.4 Results

3.4.1 Multispecies lncRNA prediction

For this work, plant species with diverse and divergent evolutionary histories were chosen for
lncRNA comparisons. Included in the analysis are various Angiosperms (including both monocots
and dicots), a Lycophyte, a Bryophyte and an algal species (See Table 3.1 in Methods). As novel
transcripts were of importance to this work, RNASeq data from published experiments were
used to assemble transcripts. After read mapping to appropriate plant genomes, transcripts
were assembled using StringTie allowing for identification of novel transcripts. Sequences of
assembled transcripts were input into CREMA, a lncRNA prediction tool (Simopoulos et al.
2018) and total lncRNA numbers in each plant species are described in Figure 3.1 and Table 3.2.
Ranked prediction scores of all transcripts in each species are available on GitHub: https://

github.com/caitsimop/lncRNA-compGenomics. The percentage of total transcripts predicted
as lncRNAs range from 3% in E. salsugineum to 16.6% in Amborella trichopoda with a mean
percentage of 6.4% ±1.1% for the 11 analyzed plant species (Table 3.2).
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Table 3.1: Information of the data sources of all RNASeq libraries

Species # high quality reads # mapped reads BioProject SRA Source of RNASeq Genome Source

Solanum tuberosum 12,469,853 11,106,056 PRJNA311702 SRR3162008 Sprenger et al. (2016) Sharma et al. (2013)
Solanum lycopersicum 18,624,814 18,277,415 PRJNA307656 SRR3095793 Cardenas et al. (2016) Tomato Genome Consortium (2012)
Eutrema salsugineum 49,522,792 46,130,371 PRJNA494564 SRR7962298 This manuscript Yang et al. (2013)
Arabidopsis thaliana 23,490,825 23,111,430 PRJNA186843 SRR2079778 Woo et al. (2016) Cheng et al. (2017)
Zea mays 15,141,539 14,481,792 PRJNA269060 SRR1688291 Gonzalez-Munoz et al. (2015) Schnable et al. (2009)
Oryza sativa 23,501,682 22,145,297 PRJNA301554 SRR2931278 Wilkins et al. (2016) Ouyang et al. (2007)
Amborella trichopoda 17,913,230 17,355,462 PRJNA212863 SRR5293262 Amborella Genome Project (2013) Amborella Genome Project (2013)
Selaginella moellendorffi 108,008,790 92,873,912 PRJNA351923 SRR4762345 James et al. (2017) Banks et al. (2011)
Physcomitrella patens 10,520,395 8,243,406 PRJNA265205 SRR1553300 Frank and Scanlon (2015) Lang et al. (2018)
Chlamydomonas reinhardtii 22,002,690 21,222,625 PRJNA264777 SRR1622084 Panchy et al. (2014) Merchant et al. (2007)
Boea hygrometrica 16,972,867 15,594,598 PRJNA210992 SRR929426 Xiao et al. (2015) Xiao et al. (2015)

To determine how reference annotation may affect lncRNA research in plants, all assembled
transcripts from each species, including novel transcripts, were compared to those found in the
corresponding reference annotation. Transcripts that were not found in reference annotation
and also predicted as a putative lncRNA were identified and are referred to as “novel” lncRNAs
throughout this manuscript. The proportion of novel lncRNA in all predicted lncRNAs ranged
among species from a low 4.5% predicted in A. thaliana and a high 99.6% in Solanum tuberosum
(Figure 3.1). Because A. thaliana is a well studied model plant with an almost fully annotated
genome, we expected this species to have fewer novel transcripts assembled from the RNASeq
data. Additionally, we expected that most lncRNAs predicted from the A. thaliana transcriptome
to already be found in the reference annotation. The high percentage of lncRNAs found in
the reference annotation of A. thaliana indicates that CREMA makes accurate predictions and
suggests that the lower percentages of known lncRNAs identified in the other species are due to
incomplete annotations (Figure 3.1).

Table 3.2: Number of predicted lncRNAs in each species

Species Total # of assembled transcripts # predicted lncRNAs % lncRNAs
Solanum tuberosum 73,656 3,783 5.1%
Solanum lycopersicum 43,936 2,721 6.2%
Eutrema salsugineum 34,862 1,040 3.0%
Arabidopsis thaliana 61,480 2,918 4.8%
Zea mays 95,713 7,225 7.6%
Oryza sativa 66,562 3,753 5.6%
Amborella trichopoda 42,118 6,972 16.6%
Selaginella moellendorffi 33,266 2,269 6.8%
Physcomitrella patens 88,649 4,648 5.2%
Chlamydomonas reinhardtii 21,467 1,383 6.4%
Boea hygrometrica 58,531 1,796 3.0%

3.4.2 Phylogenetic signal in molecular traits of plant lncRNAs

We first considered overall trends in typical distinguishing traits of lncRNAs: ORF length, GC
content, number of exons, and transcript length. All species showed a similar trend where
putative lncRNAs had a lower GC%, fewer exons, and shorter ORF length compared to the
other transcripts in their corresponding transcriptomes (Figure 3.2). Length of transcripts,
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Figure 3.1: Total predicted lncRNAs from 10 plant species. The counts of
putative lncRNAs are categorized by transcripts that appear in the reference
annotation of each species (white) and novel transcripts, or those that did not
appear in transcriptome annotation (coral). The percentages of novel tran-
scripts predicted as lncRNAs appear above each bar.

however, deviated from this trend where Zea mays, Selaginella moellendorffi and A. trichopoda
all have putative lncRNAs longer than other transcripts in their transcriptome (Figure 3.2). The
deviation from the expected trend of shorter lncRNA transcripts in three of the selected species
suggests that transcript length may not be a useful distinguishing trait in lncRNA prediction.

We tested for phylogenetic signal in mean trait values of the four molecular traits previously
mentioned in both lncRNAs and all transcripts other than lncRNAs. Phylogenetic signal es-
timates were calculated using three different indices, Moran’s I, Pagel’s λ and Blomberg’s K,
that employ two different models of evolution, Brownian motion and autocorrelation. We esti-
mated phylogenetic signal in all species but Boea hygrometrica due to the incomplete status of
its genome annotation.

Since each phylogenetic signal estimation index is based on different concepts, all estimates
cannot be interpreted the same. Firstly, Moran’s I is a measure of autocorrelation (Gittleman and
Kot 1990). Autocorrelation, when referring to phylogenetic signal, indicates how correlated traits
are in terms of phylogenetic distance. Due to the use of 10 species, Moran’s I must be compared
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Figure 3.2: Mean trait values of transcripts predicted as lncRNAs (yellow) and
all other assembled transcripts (purple). Species are ordered as per phylogenetic
relationships.

to a calculated threshold of -0.111 (Keck et al. 2016) to determine significant autocorrelation
and phylogenetic signal. A significant estimate greater than -0.111 indicates positive significant
global autocorrelation and that trait values of closely related species are more similar to each
other. Conversely, a significant estimate less than -0.111 suggests global significant negative
autocorrelation. The Brownian motion model, originally used to describe the motion of particles
suspended in fluid, is another model used to describe how traits evolve through time. In the
case of phylogenetic signal, a trait following the Brownian motion model exhibits a random walk
where the value of the trait can change in any direction at any time. Pagel’s λ uses this Brownian
motion model and can be interpreted as the transformation the phylogeny requires to explain
trait distribution if the trait followed Brownian motion (Pagel 1999). Thus, a value of 1 would
indicate a phylogeny as expected under Brownian motion and high phylogenetic signal, and a
significant value of 0 would mean a trait distribution that does not follow Brownian motion,
and consequently, low phylogenetic signal. Finally, Blomberg’s K, which also uses the Brownian
motion model, can be interpreted as the ratio of observed values over expected values if the
trait follows the Brownian motion model (Blomberg et al. 2003). A value of K = 1 can be
interpreted as a trait distribution following Brownian motion, and as K becomes larger than 1,
a stronger signal is detected. Conversely a value of K < 1 indicates low phylogenetic signal, and
less similarity between closely related tested species.

Table 3.3 shows phylogenetic signal estimates using all three indices for each of the four
molecular traits. The mean trait values and phylogenetic relationships of the tested species are
presented in Figure 3.2. In predicted lncRNAs, GC content was the only trait that demonstrates
high phylogenetic signal using all phylogenetic signal detection indices (Table 3.3). While ORF
length was had a significant positive global autocorrelation (I = 0.040; Table 3.3), a value of K
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< 1 indicates less similarity than expected under Brownian motion, suggesting unclear phyloge-
netic signal estimation. Blomberg’s K also indicates less similarity than expected in the number
of exons of lncRNAs, however no other index displayed detectable significant phylogenetic signal.
Transcript lengths of lncRNAs in tested species also demonstrate a moderate positive global au-
tocorrelation. Conversely, all four traits consistently had significant phylogenetic signal estimates
when all transcripts other than lncRNAs were evaluated, although λ for ORF length, number of
exons and transcript length were slightly less than 1.

3.4.3 Evolutionary processes and phylogenetic signal

We examined traits with an estimated K > 1 with an evolutionary model that may suggest nat-
ural selection, the Ornstein-Uhlenbeck process (Hansen 1997), because high phylogenetic signal
defined as K > 1 (Kamilar and Cooper 2013) can indicate similarity by both genetic drift and
natural selection. In lncRNAs, GC content is the only trait with K > 1, and has significant
phylogenetic signal detected using all three indices (Table 3.3). We compared the fit of a Brow-
nian motion model versus an Ornstein-Uhlenbeck model in our data using log likelihood values
and a chi square test for significance estimates. Although the Ornstein-Uhlenbeck model had
the smallest log-likelihood, a chi square test indicated that there was no significant fit difference
when comparing the Brownian motion and Ornstein-Uhlenbeck model (p=0.81). Because the
Brownian motion model has the least number of parameters, this suggests that a Brownian mo-
tion model is the most reasonable fit for the data, and there is a lack of evidence for an adaptive
process.

All four traits of all transcripts other than lncRNAs had significant high phylogenetic signal
when estimated using Blomberg’s K (K >1), therefore we also tested for a better fit explained by
the Ornstein-Uhlenbeck process. Again, the Ornstein-Uhlenbeck process was not a significantly
better fit than a Brownian motion model (ORF length: p = 1, GC content: p = 1, number of
exons: p = 1, transcript length: p = 0.75).

Table 3.3: Phylogenetic signal estimates

Feature lncRNA All other transcripts
I λ K I λ K

ORF length 0.040* 0.975 0.621* 0.010* 0.974* 1.746*

GC content (%) 0.032* 1.027* 1.614* 0.048* 1.020* 1.038*

Number of exons -0.053 0.620 0.336* 0.010* 0.922* 1.068*

Transcript length -0.020* 1.007 0.642 0.038* 0.953* 1.436*

* p < 0.05
I = Moran’s I, K = Blomberg’s K, λ = Pagel’s λ
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We tested for local autocorrelation at 100 phylogenetic distances considering the most re-
cent common ancestors of all species as a robust approach to an analysis on a small phylogeny.
Confidence intervals were computed using 1000 bootstrapping replicates for a non-parametric
significance estimate using a calculated threshold of -0.111. Figure 3.3 visualizes the local cor-
relations of traits in both lncRNAs and all other transcripts and are limited to the phylogenetic
distances of the tested phylogeny (0-1 phylogenetic distance). We detected significant positive
local autocorrelation at short phylogenetic distances in ORF length and GC content of lncR-
NAs (Figure 3.3). This suggests that closely related species contain lncRNAs with similar ORF
lengths and GC content. There was no significant autocorrelation at any short phylogenetic
distances in any tested traits in all other transcripts (Figure 3.3). Detected phylogenetic patches
are shorter in the ORF and transcript lengths of lncRNAs compared to all other transripts. The
opposite is true in the GC content of lncRNAs, where longer phylogenetic patches are observed.
Shorter phylogenetic patches suggest an adaptive process as described by an Ornstein-Uhlenbeck
model, rather than genetic drift.
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Figure 3.3: Moran’s I local correlogram of mean trait values in lncRNAs and
All Other Transcripts. Coral points indicate significant phylogenetic signal at
a particular phylogenetic distance. The horizontal line represents a value of
the null hypothesis that no phylogenetic signal is detected. The null hypothesis
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3.5 Discussion

We used raw RNASeq data from multiple independent studies to make inferences on the numbers
of predicted lncRNAs in 11 phylogenetically divergent plant species, and to identify putative
phylogenetic signal in these regulatory loci. Our data-mining approach enabled us to use the
same protocols for read mapping, transcript assembly, and lncRNA prediction for each species.
In performing the same read-mapping and lncRNA prediction protocols, we were able to address
a concern raised by Kapusta and Feschotte (2014) that comparisons between lncRNA numbers
in animals can be misleading when prediction numbers are products of meta-analyses involving
different prediction methods and lncRNA criteria. We found that the percentage of transcripts
predicted as lncRNAs was on average 6.4% with percentages ranging from 16.6% in A. trichopoda
to 3% in E. salsugineum and B. hygrometrica. These estimates for lncRNA contributions to
plant genomes are higher than comparable values for humans, where a review by Palazzo and
Lee (2015) identified that generally less than 1% of the human genome is predicted as lncRNAs.

The review by Kapusta and Feschotte (2014) also included a meta-analysis describing vari-
ation in predicted lncRNA numbers among multiple animal species, a comparison similar to
our observed prediction numbers in plants. In addition to their concern about transcriptome
data arising from different methodologies, Kapusta and Feschotte (2014) also raised the issue
of temporal and location specific lncRNA expression. We share a comparable concern in that
plant lncRNAs have yet to be predicted in all tissue types for all developmental time points in
all possible environments, so undoubtedly the number of putative lncRNAs detected in plants
will increase over time. In our study, we identified 2918 putative lncRNAs in A. thaliana plants
that were grown under conditions designed to avoid exposing plants to sources of stress. In con-
trast, although using different prediction methods, Zhao et al. (2018b) identified 6150 putative
lncRNAs in A. thaliana plants undergoing cold, ABA and drought treatments. This difference
in predicted lncRNAs is consistent with the expectation that lncRNAs likely play a role in stress
responses and hence finding increased diversity and transcript abundance in stressed relative
to unstressed plants. Interestingly, Zhao et al. (2018b) found that lncRNAs in A. thaliana are
shorter and have fewer exons than all other transcripts, observations that agree with our study
(Figure 3.2). Thus our machine learning-based methodology that was trained on only empirically
characterized, functional lncRNAs and the filtering method employed by Zhao et al. (2018b) lead
to similar conclusions on traits shared by lncRNAs that distinguish them from other transcripts.

The reported differences in lncRNA numbers between humans and plants described above is
interesting and merits future research, but equally intriguing is our finding of the large variation
in lncRNAs predicted from transcriptomes between different plant species. A question to raise is
whether the number of lncRNAs predicted for E. salsugineum, B. hygrometrica and A. trichopoda
are truly extreme examples in lncRNA prediction numbers, or are there naturally considerable
ranges of lncRNA contribution to diverse plant genomes?
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The genome of A. trichopoda, the sister taxa to all other extant angiosperms, represents a
unique evolutionary history. During genome annotation, The Amborella Genome Project (2013)
observed a larger number of the atypical 23 to 24nt plant miRNAs than expected as they were
found in two times greater frequency than any other land plant. Additionally, eight predicted
miRNA families in A. trichopoda have evidence of loss in more recent angiosperms (Amborella
Genome Project 2013). The excess of miRNAs in A. trichopoda may reflect the high proportion
of lncRNAs predicted in this study (at 16%; Table 3.2) as miRNA progenitors are considered to
be lncRNAs (Saini et al. 2008).

Two plants, namely E. salsugineum and B. hygrometrica, were found to have the lowest
proportion of lncRNAs in their transcriptomes (Table 3.2). E. salsugineum represents a plant
with a halophytic life strategy and a capacity to tolerate a variety of extreme environmental
conditions (Kazachkova et al. 2018). Indeed, E. salsugineum has been used as a model plant
in stress response studies due to its naturally high tolerance to abiotic stresses such as salt
(Taji et al. 2004), cold (Griffith et al. 2007), drought (MacLeod et al. 2014), and nutritional
deficiencies (Velasco et al. 2016). Moreover, E. salsugineum shows constitutive expression of
genes reported to be stress-responsive in many plants (Taji et al. 2004; Gong et al. 2005; Wong
et al. 2006; Velasco et al. 2016). B. hygrometrica, aptly named “the resurrection plan”, is also
considered an extremophile by virtue of its capacity to survive desiccation (Xiao et al. 2015).
However, B. hygrometrica shows different expression pattern changes when experiencing stress
compared to E. salsugineum. Zhu et al. (2015) did not observe constitutively high expression of
stress tolerance genes in B. hygrometrica during desiccation. Instead, B. hygrometrica seemed to
require gradual dehydration priming for survival after rehydration post-desiccation (Zhu et al.
2015). B. hygrometrica plants that have been consequently rehydrated after this dehydration
“training” have expression patterns more similar to desiccated plants than those without drought
priming (Zhu et al. 2015). In other words, after experiencing a first gradual dehydration there
are expression differences between well-watered B. hygrometrica plants and ones that experi-
enced desiccation. The observation that B. hygrometrica plants can show “preparedness” among
expressed genes normally responsive to a stressful condition is somewhat analogous to the con-
stitutive nature of expressed genes in E. salsugineum. Specifically, E. salsugineum plants grown
in the absence of high salt display the expression of genes reported to be salt-responsive in other
plants (Taji et al. 2004; Wong et al. 2006). Interestingly, both E. salsugineum and B. hygro-
metrica display a low proportion of predicted lncRNAs in their transcriptome, suggestive of a
possible connection between high natural stress tolerance and low lncRNA number (Table 3.2).
Conceivably, with stress-related genes constantly expressed under a primed condition, a plant
adapted to an extreme environment may not require the precise regulation conferred by the re-
cruitment of diverse lncRNAs, an important role proposed for the function of lncRNAs in plant
stress responses.

E. salsugineum and A. trichopoda have distinct evolutionary patterns and both species have
few putative lncRNAs present in their reference annotations. In total, five of the ten tested plant
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species had less than 50% of predicted lncRNAs in their respective genome annotations. As
genome annotation often relies on homology of predicted genes for functional annotation (Bolger
et al. 2018), particularly homology to A. thaliana protein-coding genes, lncRNAs can often be left
out of genome annotation. Researchers studying plant lncRNAs frequently rely on bioinformatic
analyses to assemble novel transcripts for lncRNA prediction (Liu et al. 2018b; Shuai et al. 2014),
indicating that missing lncRNA annotation should be taken into consideration in forthcoming
genome annotation projects. Similar to our work, Jackson et al. (2018) recently described mis-
annotation of lncRNAs in mammalian genomes. Gaps in annotation and the ensuing problem
with lncRNA identification is exacerbated by the fact that lncRNAs do not follow classic evolu-
tionary conservation. Instead, lncRNAs mostly depict a positional conservation pattern rather
than transcript sequence conservation making functional predictions also difficult (Hezroni et al.
2015). A lack of extensive lncRNA conservation between species led to our investigation into
phylogenetic signal detection in molecular traits of lncRNAs.

While few studies have compared lncRNA sequence conservation between plant and animal
systems, conservation within more closely related species has been a topic of recent interest.
Hezroni et al. (2015) describe little conservation of entire lncRNA sequences between vertebrate
species with divergence over 50 million years ago. Instead of overall sequence conservation, the
authors observed short regions of homology and syntenic conservation in vertebrate lncRNAs
(Hezroni et al. 2015). Notably, when looking at specific classes of lncRNAs in animals, Ultra
Conserved Regions (UCRs) and Human-Accelerated Regions (HARs), both regions found in
validated lncRNAs, offer opposing ideas to lncRNA conservation. UCRs (Calin et al. 2007)
describe regulatory sequences that are 100% conserved in humans, mice and rat genomes. HARs
instead, found in lncRNAs HAR1A and HAR1B, describe regions in vertebrate genomes with an
extremely high number of mutations in human sequences (Pollard et al. 2006). This discrepancy
suggests that lncRNA homology is not completely straightforward and may vary depending
on lncRNA classification. However, lncRNA classification is complex and still lacks a set of
agreed-upon rules for each lncRNA type. A recent review even suggests that there exists over
50 overlapping lncRNA categories in the literature, not all of which are based on function or
structure (St. Laurent et al. 2015).

In plant species, lncRNAs homology has been shown to be virtually non-existent outside of
the family classification. Only 1% of predicted A. thaliana (Brassicaceae) lncRNAs were iden-
tified as homologous in Tarenaya hassleriana (Cleomaceae) (Nelson et al. 2016). Interestingly,
although distantly related, human and plant lncRNAs bear similarities in number of exons, and
transcript and ORF length. For example, Derrien et al. (2012) describe human lncRNAs as being
shorter than protein coding genes, and by commonly having fewer exons which was also observed
in our plant species analyses (Figure 3.2). However, human lncRNAs are typically spliced and
most often have two exons, while our study suggests plant lncRNAs are more often unspliced
and comprised of a single exon (Figure 3.2). Domination of single exon novel lncRNAs in our
work may be indication of genomic contamination in source data or bioinformatic transcript
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assembly artefacts. Nevertheless, genomic contamination is unlikely seen in all ten independent
experiments, and transcript assembly artefacts more likely result from de novo assembly rather
than genome guided mapping. Further, Haerty and Ponting (2015) also observed a lower GC
content in lncRNAs than the protein coding genes of metazoan lncRNAs, with single-exon lncR-
NAs having the lowest GC content of all exon-types, reminiscent of the uni-exonic plant lncRNA
majority of our analyses. However, the extent to which conserved traits typify plant and animal
lncRNAs is difficult to assess at present. CREMA is trained on only validated lncRNA and may
be subject to a prediction bias to animal-like lncRNA sequences given that non-plant sources
currently comprise the majority of validated lncRNAs (Simopoulos et al. 2018). As more plant
lncRNA undergo validation, the extent of conservation among lncRNAs from diverse organisms
will be easier to detect and estimate with greater precision.

Despite these concerns over bias, among the lncRNAs predicted by CREMA we found phy-
logenetic signal by at least one method in all four tested traits of lncRNAs: ORF length, GC
content, the number of exons and transcript length (Table 3.3). Phylogenetic signal detection
in traits of lncRNAs was not expected given the lack of evidence for sequence conservation in
this class of RNA (Nelson et al. 2016; Hezroni et al. 2015). If the phylogenetic relationships
of species are influencing the tested traits, as indicated by detectable phylogenetic signal, the
species can no longer be considered independent. To demonstrate the pitfalls of using a statis-
tical test that assumes independence when data are not independent, we statistically tested for
differences in trait values of lncRNAs and all other transcripts in 10 species. Using an ANOVA
and subsequent post-hoc tests without consideration of the species’ phylogenetic relationships,
we found that trait value differences between predicted lncRNAs and all other transcripts were
significantly different in 172 of 190 post-hoc tests (Figure S2.1). The differences between the
results of analyses that incorrectly assume independence from testing for phylogenetic signal and
acknowledging potential non-independence of data underscore the importance of phylogenetic
signal detection in data before carrying out statistical anlyses in comparative genomics studies.

While it is possible to identify phylogenetic signal in our data, it is difficult to infer evolution-
ary processes from phylogenetic signal estimates as many unique processes can invoke a similar
signal estimation (Revell et al. 2008). However, the high K estimates in both the GC content
trait values of lncRNAs and in all traits of all other transcripts suggests limited similarity of
molecular traits in lncRNAs, contrary to overall high phylogenetic signal in the tested traits of
all other transcripts. High phylogenetic signal, and consequently, high similarity of GC content in
lncRNAs of closely related species is somewhat expected, as Haerty and Ponting (2015) identified
evidence of selection on the GC content of intergenic lncRNAs in animal species. As previously
mentioned, GC content in animal lncRNAs is lower than in protein-coding genes, mirroring what
our work identified in plant lncRNAs. In the GC content of lncRNAs, an Ornstein-Uhlenbeck
process model was not found to explain the evolutionary processes more than a Brownian mo-
tion model and suggests more evidence for genetic drift than an adaptive process. However,
as discussed by Cooper et al. (2016), Ornstein-Uhlenbeck models may be prone to error when
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tested on small phylogenies with less than 200 species. As such, we cannot discount that a high
K estimate may be indicative of selection on the GC content of lncRNAs.

A lack of similarity in ORF length, number of exons, and transcript length of lncRNAs in close
relatives may be due to a variety of processes, including but not limited to: stabilizing selection
with high selective strength, selection with variable strength that is bounded by phenotypic
limits, punctuated divergent selection, or genetic drift of which rate of drift began low and
increased towards present time (Revell et al. 2008). Because of the variety of possible complex
interpretations of phylogenetic signal and process, Revell et al. (2008) do not recommend over-
interpretting evolutionary processes from signal data. We have found, however, unique patterns
in the phylogenetic signals of molecular traits of lncRNAs compared to all other transcripts in
plant species that imply lncRNAs are not following similar evolutionary trends as most other
transcripts. Moreover, the lack of similarity in three of the four tested molecular traits in lncRNAs
is of interest and this observation implies that evolution of lncRNAs could be species specific,
and is not be easily defined by an over-arching evolutionary process. On the other hand, it is
possible that there are subclasses of lncRNAs with conserved molecular traits yet to be defined
due to a lack of validated transcripts.

Because CREMA (Simopoulos et al. 2018) predicts lncRNAs using a complex ensemble ma-
chine learning model that initially uses ORF length, GC content and transcript length as features
for transcript classification, it is possible that high detected phylogenetic signal in these features
is a product of the lncRNA prediction tool. However, CREMA’s logisic regression ensemble
classifier that is used for the final lncRNA prediction does not use molecular traits as prediction
features, but instead binary outputs from eight gradient boosting models. Additionally, we have
identified low phylogenetic signal in two of these three molecular traits (Table 3.3) suggesting
that CREMA is able to predict lncRNAs with varying ORF and transcript lengths.

In this work we show that the annotation status of plant species can affect lncRNAs prediction
with up to 99% of predicted lncRNAs missing from reference annotation. While researchers may
be striving to increase the volume of lncRNA research, the effort to annotate genomes with lncR-
NAs is not reflective of the increased interest in this RNA class. As such, we caution researchers
interested in these regulatory loci to be wary of relying solely upon genome and transcriptome
annotations for lncRNA identification. Additionally, our work shows that plant lncRNAs have
inconsistent detectable phylogenetic signal in sequence traits, further confirming the complex
evolutionary history of lncRNAs. In particular, the differences in detected phylogenetic signal in
lncRNAs compared to all other transcripts suggests that lncRNAs evolve, on average, differently
than other loci. Finally, a low proportion of transcripts predicted as lncRNAs in E. salsugineum
and B. hygrometrica, two species highly tolerant to abiotic stress, may indicate that adaptation
to extreme conditions may not be orchestrated by many, diverse lncRNAs and that indeed, the
converse may be true.
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3.6 Methods

3.6.1 Data collection

RNASeq data from multiple plant species were downloaded from the SRA database (See Ta-
ble 3.1 for accession and SRA IDs). All plants in this analysis have a publicly available se-
quenced genome. All RNASeq reads except for those from E. salsugineum were downloaded
from the Sequence Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra). To be considered,
plants must have been grown under control conditions without being subjected to stress. For
consistency, preference was given to studies that used leaf tissue from mature plants, although
use of older seedlings was accepted. Additionally, only RNASeq reads from Illumina technology
were considered, however both paired and single end reads were used.

E. salsugineum reads were sequenced using Illumina technology from Shandong ecotype
rosette leaves grown under control, unstressed conditions as outlined in MacLeod et al. (2014).
Fully-expanded leaves were used for RNA sequencing, and were collected between 8 and 10
hours into the day cycle. RNA was extracted from leaves flash-frozen using liquid nitrogen using
a modified hot borate method as described Champigny et al. (2013). A quality control analysis
was competed on the RNA using RNA Nano 600 chips on a Bioanalyzer 2100 and purified using
three on-column purifications by Genelute mRNA miniprep kit (Cat. No. MRN10, Sigma).
Finally, preparation of cDNA for sequencing was performed with the NEBNext multiplex cDNA
synthesis kit for Illumina using random hexamers (Cat. No. E7335, New England Biolabs, Ip-
swich, MA). Cleanup of fragmented RNA was performed with Agencourt AMPure XP Beads
(Cat. No. 163987, Beckman Coulter, Mississauga, ON) following the manufacturer’s protocol.
Raw FASTQ files were deposited to the SRA with submission ID SRR7962298 and BioProject
accession PRJNA494564.

3.6.2 Transcript assembly and lncRNA prediction

Reads from all plant species were trimmed using Trimmomatic v0.36 (Bolger et al. 2014)
and aligned to their corresponding genomes using STAR v2.5.2b (Dobin et al. 2013) us-
ing default settings other than --outFilterIntronMotifs set to RemoveNoncanonical and
--alignEndsType EndtoEnd. Aligned reads were assembled into transcripts by StringTie
v1.3.4d (Pertea et al. 2015). GTF files of assembled transcripts were merged with GTF
files of annotated genomes and are stored on GitHub: https://github.com/caitsimop/

lncRNA-compGenomics. Alignment quality was tested using gffcompare v0.10.4 (https://

github.com/gpertea/gffcompare) by comparing assembled transcript GFF files with refer-
ence genome GFF files. Alignment quality metrics were used to confirm alignment quality and
transcript assembly quality using accuracy and precision values File S2. Gffcompare output was
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also used to identify novel transcripts and to quantify transcript exon numbers in each RNASeq
library.

3.6.3 Identifying lncRNAs from RNASeq data

Assembled transcript sequences were input into CREMA (https://github.com/gbgolding/crema,
Simopoulos et al. 2018) for ranked lncRNA prediction. The number of lncRNAs in each species
was calculated as a percentage of all transcripts (the sum of novel assembled transcripts and
transcripts in reference annotation). The percentage of lncRNAs was used for normalization
across all studied plant species to ensure appropriate comparisons to species with different sized
transcriptomes.

3.6.4 Phylogenetic signal in lncRNA traits

Four continuous molecular traits were chosen for phylogenetic signal analysis on predicted lncR-
NAs: 1. Number of exons in transcript, 2. GC content of transcript, 3. Length of transcript, and
4. Length of maximal ORF. Features were extracted from transcript sequences and gffcompare
outputs using a custom Python script. The phylosignal R package (Keck et al. 2016) was
used to detect phylogenetic signal in lncRNAs, all other transcripts, and the differences between
lncRNAs and all other transcripts for each trait in all species except for B. hygrometrica. Sep-
arate phylogenetic signal tests were completed for each trait. Although we expect there to be
correlation between transcript length and ORF length, we did not observe a correlation, par-
ticularly in lncRNAs. Phylogenetic signal of the mean value of the four traits was calculated
using three separate methods: Moran’s I (Moran 1948; Gittleman and Kot 1990), Blomberg’s
K (Blomberg et al. 2003) and Pagel’s λ (Pagel 1999). Local autocorrelation estimates at 100
phylogenetic distance points were also computed using Moran’s I and phylosignal to identify
the location and sign of the detected autocorrelation. To identify significant autocorrelation
estimates, 1000 bootstrap replicates were used for 95% confidence interval calculation. Auto-
correlation estimates were considered significant if 95% confidence intervals did not overlap the
null hypothesis threshold of -0.111. The null hypothesis that there is no detectable phyloge-
netic signal, or, autocorrelation, was a threshold of −1/(n − 1) where n = 10, or the number
tested species, as suggested by Keck et al. (2016). Because branch lengths were required by the
phylosignal package, branch lengths were estimated from a MAFFT v7.205 (Katoh et al. 2002)
alignment of rps16, atp2, 18s, 26s and SMC1 (File S3) using the dnaml program in PHYLIP
(Felsenstein 1993) (phylogeny with branch lengths is available in Figure S2.2). B. hygrometrica
was not included in phylogenetic signal analysis due to the limited percentage of annotated loci
in genome annotation. The tree topology of land plants as reported by the Amborella Genome
Project (2013) was used, and branch lengths were estimated from this topology. Branch lengths
representing site changes were converted to relative age of branches using the R package ape
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(Paradis and Schliep 2018). A lambda value of 0 was chosen from 0, 0.1 and 1 after testing for
the lowest log likelihood of lambda options.

Trait values with high K values (K >1) were chosen for further testing for better fit to models
that consider an Ornstein-Uhlenbeck process and may indicate selection on traits. Traits values
were fit with macroevolutionary models using the geiger (Harmon et al. 2008) R package and
the fitContinuous function. Both “BM” (Brownian motion) and “OU” Ornstein-Uhlenbeck
models were considered. Fit was tested for using the log liklihood estimate while considering the
number of parameters in each model.

3.6.5 Data availability

Raw FASTQ RNA sequencing data is available in the SRA with submission ID SRR7962298
and BioProject accession PRJNA494564. Ranked lncRNA prediction scores and GFF files of
assembled transcripts are available on the author’s GitHub https://github.com/caitsimop/

lncRNA-compGenomics. Results of post-hoc t-tests that do not consider phylogenetic relation-
ships are described in Figure S2.1. Quality of transcriptome assemblies are available in File S2.
The FASTA files of genes used in the estimation of branch lengths is available in File S3. The
phylogenetic tree branch lengths adjusted relative to time are found in Figure S2.2.
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4.1 Preface

Chapter 4 describes how the long non-protein coding RNA (lncRNA) prediction tool (as de-
scribed in Chapter 2) can be used in conjunction with transcriptomic studies. In this work, we
describe the molecular responses of two natural accessions of Eutrema salsugineum subjected to
a two-stage progressive drought. Previous work by MacLeod et al. (2014) demonstrated that
the E. salsugineum ecotypes displayed similar physiological responses following a first drought,
but differed significantly following a second drought. Our work tested the molecular contribu-
tions, including lncRNAs, to these drought responses using RNA sequencing and computational
analyses to identify differentially expressed genes and co-expressed gene clusters.

Chapter 4 is formatted for submission to BMC Genomics. The original experiment was de-
signed by M. MacLeod and E. A. Weretilnyk. M. MacLeod grew the Eutrema salsugineum plants
used in the experiment, extracted RNA from 16 plants for RNA sequencing and contributed to
the original manuscript draft. S. Irani extracted RNA from 15 more plants for RNA sequencing
and performed the RT-qPCR experiment. W. Sung and M. Champigny performed preliminary
data analyses that I advanced with additional data and broadened computational tools. I com-
pleted all bioinformatic analyses described in the manuscript including read mapping, transcript
assembly, novel transcript identification, lncRNA prediction, multivariate analyses and network
analysis. E. A. Weretilnyk and I wrote the manuscript. P. Summers contributed significantly to
the original experimental design and initial manuscript draft. G. B. Golding and E. A. Weretilnyk
supervised the analyses and revision of the manuscript.
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4.2 Abstract

Background: The extremophile crucifer, Eutrema salsugineum, is a halophyte and hence highly
tolerant of osmotic stress. Previously, we developed a two-stage, progressive drought treatment
that delineates the drought response and recovery from water deficit for two E. salsugineum
ecotypes that originate from Yukon, Canada and Shandong, China. Few physiological traits
discriminate the ecotypes during a first exposure to water deficit although Yukon plants have
a heightened capacity to accumulate solutes and delay turgor loss during a second drought
treatment relative to Shandong plants. In this study we compared 31 leaf transcriptomes corre-
sponding to plants undergoing the progressive water deficit protocol.

Results: The first water deficit exposure led to the differential expression of almost 1100 genes
for the Yukon ecotype whereas only 63 genes were differentially expressed for Shandong E. salsug-
ineum. Transcriptomes from plants undergoing the second drought treatment provided a different
outcome in that almost 5000 genes were differentially expressed in Shandong plants compared to
about 1,900 genes in Yukon plants. Only 13 genes showed similar drought-responsive patterns
for both ecotypes. About 300 (2%) of the differentially expressed genes were predicted as long
non-protein coding RNAs (lncRNAs) with only 14 drought-responsive lncRNAs found to over-
lap between the ecotypes. Co-expression network analysis of the transcriptomes produced eight
gene clusters containing over half of the differentially expressed genes. While gene clusters were
correlated to drought treatments, few clusters correlated similarly to drought for both ecotypes.

Conclusions: Yukon and Shandong E. salsugineum plants are not equally drought tolerant.
Relative to Yukon plants, Shandong plants displayed a weak transcriptional response following
initial drought treatment and yet displayed a strong response during the second drought treat-
ment. This ecotype-specific transcriptomic response would have escaped notice had we used a
single exposure to a water deficit. Notably, the comparatively robust, early transcriptional re-
sponse shown by Yukon plants is associated with an improved capacity to withstand a second
drought exposure. The capacity to improve tolerance and grow after a single drought episode
represents an important adaptive trait for a plant that thrives under semi-arid Yukon conditions
and may be similarly advantageous for crop species experiencing stresses attributed to climate
change.

4.3 Introduction

Crop losses due to limited soil water availability brought on by periods of drought exceed losses
attributed to all other abiotic and biotic stressors (Boyer 1982). Scientists predict that climate
change will likely exacerbate these losses in the near future and there is evidence that this process
has already reduced plant productivity globally (Zhao and Running 2010; Knapp et al. 2017).
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Understanding how plants respond to, and recover from, drought is vital to not only maintaining,
but also improving global crop yields (Mittler and Blumwald 2010; Boyer et al. 2013).

Plant responses to drought are complex and variable, but our understanding of this subject
has advanced nonetheless, in part through the benefits accrued from using different experimen-
tal approaches. For example, using tissues from plants with documented physiological responses
to an imposed stress allows for drawing correlative associations between the physiological and
molecular responses to drought (Harb et al. 2010). Meyer et al. (2014) used a correlative ap-
proach with switchgrass to show that some genes only respond to drought-treatment exposures
that extended beyond critical physiological thresholds (e.g. water potential and photochemical
quenching measurements). Sequential drought treatments can also produce plants that display
altered responses to subsequent exposures to water deficits (Wang et al. 2014a).

The transcriptional response to repeated drought exposures has been shown to be distinct
from the response to a single water deficit (Ding et al. 2012). When Arabidopsis thaliana seedlings
grown on media plates were exposed to repeated cycles of dehydration, the relative expression of
several drought-responsive genes showed evidence of “training”, a phenomenon also referred to
as “drought memory”. A genome-wide RNA-Seq approach helped resolve four distinct classes of
drought memory genes in A. thaliana that reflect their broad strategic roles in protecting plants
from the deleterious aspects of drought (Ding et al. 2013).

In this report we describe the transcriptional responses of the extremophile crucifer Eutrema
salsugineum (synonymous with Thellungiella salsuginea), to water deficits. The geographic range
where E. salsugineum is found is broad and extends across the Asian and North American conti-
nents (Wang et al. 2015) and so, not surprisingly, across very different climatic conditions. In the
semi-arid, sub-arctic Yukon, Canada, E. salsugineum experiences periods with little precipitation
in parts of its natural range (Guevara et al. 2012). In contrast, an accession originating in Shan-
dong, China, is found in a temperate region that is subject to higher precipitation (Inan et al.
2004). Importantly, both the Yukon and Shandong accessions are halophytes and consequently
equipped with a strong capacity for coping with high osmotic stress, and thrive when exposed to
concentrations of NaCl exceeding 300 mM (Kazachkova et al. 2013; Lee et al. 2016b). Despite
this unusually high tolerance to osmotic stress, MacLeod et al. (2014) reported that the Yukon
and Shandong E. salsugineum accessions respond differently to a drought treatment that includes
two periods of water deficit separated by a brief recovery period. Plants of the Yukon accession
accumulate solutes in response to an initial water deficit and during a second drought treatment,
the plants retain water content longer and maintain leaf expansion. Conversely, plants of the
Shandong accession show no obvious benefit from the initial drought exposure. These physi-
ological responses are consistent with Yukon plants showing drought tolerance and Shandong
plants displaying drought avoidance. Notably, the first drought exposure treatment did little to
distinguish the drought-responsive phenotypes that characterize the two accessions.

An indication that the initial drought exposure elicits different responses at the molecular
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level between the Yukon and Shandong accessions was given by measures of gene expression for
four genes classically found to be drought-responsive in many species namely RAB18, RD29A,
ERD1 and RD22 (Yamaguchi-Shinozaki and Shinozaki 1994; Ding et al. 2012; Panchbhai et al.
2017). Thus we undertook this comparative RNA-Seq study to provide a more complete under-
standing of how differently these two accessions respond to water deprivation. In this comparison
we also evaluated the contribution of predicted long non-protein coding RNAs (lncRNAs), an
interest prompted by their perceived and growing role as gene expression regulators during plant
development and in response to stress, including water deficits (Bastow et al. 2004; Franco-
Zorrilla et al. 2007; Bardou et al. 2014; Qin et al. 2017). Based on the RT-qPCR analysis of
RAB18, RD29A, ERD1 and RD22 reported by MacLeod et al. (2014), we hypothesized that the
ecotypes would undergo very different patterns of transcriptional re-programming during water
deficits and that ecotype-specific lncRNAs may be implicated in their differential responses. In
this work, we show that this prediction was borne out by comparative transcriptome analyses
showing substantive differences in gene expression patterns of both protein-coding loci and lncR-
NAs that distinguish Yukon and Shandong E. salsugineum plants with respect to their response
to reduced water availability.

4.4 Results

4.4.1 RNA-Seq of E. salsugineum accessions following drought and
recovery

We prepared and analysed leaf transcriptomes of Yukon and Shandong E. salsugineum plants
subjected to a progressive, two-stage drought treatment protocol as described by MacLeod et al.
(2014). A total of 31 cDNA libraries were prepared with 15 and 16 plants from the Yukon and
Shandong genotypes, respectively. Libraries corresponded to plants harvested at various fraction
of transpirable soil water (FTSW) percentages: WW1 (100% FTSW), severe drought at D1 (10%
FTSW), following re-watering and recovering from drought at WW2 (100% FTSW), and a second
severe drought at D2 (10% FTSW). This experiment included two different RNA-Seq library
preparation protocols (See Section 4.7). Table 4.1 shows that a comparable number of genes
were detected in each of the cDNA libraries when considering both genotype as well as the two
different, albeit similar, library preparation methods. To confirm that sequencing timing did not
interfere with gene expression detection, two previously prepared and sequenced cDNA libraries
(SD2.2 and YD2.1) were resequenced. Using principal component analysis (PCA), few differences
were observed between the two sequencing time points by way of library overlap visualized in
a PCA biplot (Fig. S3.1). However, as the pairs represented technical replicates, data from the
resequenced libraries were not used in further bioinformatic analyses. Additionally, we assessed
the capacity of our transcriptomic database to discern differentially expressed genes, particularly
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drought and/or accession-specific genes. To do so, we compared log2-fold change values derived
by RNA-Seq to expression data derived by an independent approach using RT-qPCR (Fig. S3.2).
We chose four genes for relative abundance determinations (EsRAB18, EsRD22, EsRD29a and
EsERD1 ) as these four dehydrin-related genes were previously shown by RT-qPCR to distinguish
the responses displayed by Shandong and Yukon ecotypes at various stages of the progressive
drought protocol (MacLeod et al. 2014). We found excellent agreement between RNA-Seq and
RT-qPCR results for these four genes at the three stages tested (D1, WW2 and D2) relative to
their levels of expression under control, WW1 conditions (Fig. S3.2).

On average, approximately 17,400 genes were detected in each library with the lowest number
of genes identified in the YWW2.1 library at 16,860. Using a minimum threshold for detection of 1
fragment per kilobase per million mapped reads (FPKM), we found read support for 20,841 genes,
or 79% of the 26,531 genes comprising the predicted coding capacity of the JGI E. salsugineum
v1.0 genome (Yang et al. 2013). A number of genes (11%) were expressed only in Shandong
(1268 genes) or Yukon leaves (1023 genes). Thus, for each accession, less than 5% of the total
protein-encoding capacity of the genome was expressed in an accession-specific manner.

Table 4.1: Number of detected loci by RNA-Seq in all 31 RNA-Seq libraries
at a threshold of > 1 FPKM

All loci Putative lncRNA
Library Yukon Shandong Yukon Shandong
WW1.1 17268 17749 446 498
WW1.2 17303 17440 462 520
WW1.3 17106 17595 442 480
WW1.4 17320 17423 475 489
D1.1 17608 17512 509 489
D1.2 17587 17479 522 449
D1.3 17170 17532 459 534
WW2.1 16860 17118 445 484
WW2.2 17545 17424 514 510
WW2.3 17217 17866 462 548
WW2.4 17037 17758 437 524
D2.1 17484 17589 517 531
D2.2 17493 17516 507 534
D2.3 17367 17277 477 520
D2.4 17312 17075 470 483
D2.5 NA 17357 NA 509
Mean 17311 17481 486 506

We did not restrict our analyses to reads mapping to annotated regions in the genome, but
instead used a conservative approach to identify novel transcripts that are expressed but remain
without annotation. In addition, we looked for expression of other transcripts previously de-
scribed by Champigny et al. (2013) and Yin et al. (2018). Of the 411 transcripts previously
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identified by Champigny et al. (2013), 383 were expressed in at least one genotype and condition
during the progressive drought (Table 4.2). An additional 1608 previously unidentified tran-
scripts, referred to as DLOCs in this work, were expressed at one point during the experiment,
of which 24 overlapped in genomic location with those described by Yin et al. (2018). In total,
we detected expression of 919 putative lncRNAs, of which only 71 (7.7%) were present in the
E. salsugineum reference annotation.

Table 4.2: Number of detected unannotated genes in all 31 RNA-Seq libraries
at a threshold > 1 FPKM

MacLeod et al. (2014) Yin et al. (2018) DLOC
Library Yukon Shandong Yukon Shandong Yukon Shandong
WW1.1 308 287 15 23 650 722
WW1.2 316 281 15 23 668 763
WW1.3 298 274 13 23 643 697
WW1.4 312 272 14 22 695 711
D1.1 316 286 14 23 767 717
D1.2 322 292 14 22 798 639
D1.3 302 280 14 21 671 794
WW2.1 307 287 14 22 654 675
WW2.2 310 285 14 22 760 731
WW2.3 307 281 14 20 670 793
WW2.4 300 278 14 20 637 771
D2.1 316 296 13 20 776 756
D2.2 319 301 13 22 757 776
D2.3 307 281 14 22 729 764
D2.4 305 272 13 22 706 687
D2.5 NA 274 NA 22 NA 727
Mean 310 283 14 22 705 724

Counts only considered Yin et al. (2018) genes not previously identified by
MacLeod et al. (2014). DLOC loci are those identified as novel by this study.

4.4.2 Identifying differentially expressed genes

PCA was used to explore sources of variance in transcript abundance among the 31 sequenced leaf
cDNA libraries. PCA provides factor loading scores for each library with each score representing
the extent to which the abundances of transcripts from each library contribute to a given principal
component. PC1 accounted for 94.2% of the variance but did not distinguish the libraries on the
basis of genotype or treatment, a feature reported by Champigny et al. (2013) to correspond to
gene expression levels (Fig. S3.1). In contrast, PC2, PC3 and PC4 accounted for far less variance
than PC1 (2.1%, 0.9%, 0.7%, respectively) but offered more meaningful biological insights into
genotype and treatment-specific differences between the transcriptomes. By way of example,
Fig. 4.1 is a biplot of PC2 and PC4 and it displays the variability due to ecotype, and to a lesser
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extent, variation due to treatment. Specifically, PC2 only explains 2.1% of the variance in the
data but it clearly distinguishes the scores for Yukon transcriptomes from those of Shandong
plants along the horizontal axis. For Yukon transcriptomes, PC4 discerned drought-treated from
well-watered, including re-watered plants. The scores for cDNA libraries of drought-treated
Yukon plants have positive loadings along PC4 (YD1, YD2) whereas more negative scores are
associated with plants that have either not experienced a water deficit (YWW1) or have been
re-watered and allowed to recover following a drought treatment (YWW2). In contrast, the
scores for Shandong libraries produced from well-watered plants (SWW1, SWW2) cluster with
plants experiencing drought (SD1, SD2) and re-watered plants (SWW2). Thus, PC4 appears to
describe a source of variance that is related to water deficit for Yukon plants, with a far less clear
distinction for the response to water deficits given by transcriptomes of Shandong plants.
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Figure 4.1: Principal component analysis of transcript abundances of Yukon
and Shandong E. salsugineum plants undergoing stages of a progressive drought
treatment protocol.

Analysis using DESeq2 yielded 4650 and 2454 drought-responsive genes that were differen-
tially expressed only in either Shandong or Yukon plants, respectively, while 1599 differentially
expressed genes (DEGs) were found in transcriptomes for both accessions (Additional file 2).
Fig 4.2 provides an overview of DEG numbers identified in comparisons of the 31 transcriptomes
over the course of the progressive drought protocol for each genotype separately (Fig. 4.2A,B)
and as a summary of overlapping DEGs (Fig. 4.2C). The transition from a well-watered condi-
tion to D1 provides a striking impression. In Shandong plants, only 63 DEGs were identified
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as undergoing significant changes in expression after the first drought exposure, whereas 1085
DEGs were detected in Yukon plants (Fig. 4.2A,B). A mere 29 DEGs were common between the
two ecotypes. Fig 4.2 also provides the estimated contribution of DEGs predicted to be lncRNAs
at each stage of the protocol for both natural accessions. Notably, none of the DEGs identified in
Shandong plants at D1 were predicted as lncRNAs whereas 2.7% of the DEGs detected in Yukon
plants at D1 were predicted as being lncRNAs. During the recovery from the initial drought
(D1) to the re-watered and recovery stage (WW2), the two ecotypes again show different gene
expression responses. Of the total DEGs identified in each genotype, over 82% and 77% were
unique to Yukon and Shandong plants, respectively.

WW1 D1 WW2 D2A. Shandong

↑ upregulated
↓ downregulated

41 (0%) ↑

22 (0%) ↓

2105 (1.5%) ↑

1497 (1.9%) ↓

2387 (2.9%) ↑

2576 (1.2%) ↓

WW1 D1 WW2 D2
B. Yukon 429 (4.0%) ↑

656 (1.8%) ↓

1333 (1.5%) ↑

1031 (1.9%) ↓

669 (3.1%) ↑

1197 (1.0%) ↓

WW1 D1 WW2 D2
20 (0%) ↑

9 (0%)↓

497 (1.2%)↑

302 (0.3%) ↓

274 (1.8%) ↑

434 (0.5%) ↓

C. Overlap

Figure 4.2: Number of DEGs detected in each E. salsugineum ecotype and
overlap between DEGs at each stage of the progressive drought treatment. The
number of upregulated DEGs are described in coral above the transition arrow.
The number of downregulated DEGs are given in blue below the transition
arrow. Numbers in brackets refer to the percentage of DEGs predicted by
CREMA as encoding lncRNAs.

The overall impression is that Shandong and Yukon plants undergo different transcriptional
reprogramming during both stages of the progressive drought protocol. The DEG comple-
ment they share, based on empirical evidence, can be as low as 2% for a comparison between
WW1 → D1 and up to 14% in D1 → WW2 plants. The overlap of DEGs predicted as lncRNAs
is negligible as only 14 unique, putative lncRNAs were identified among the DEGs of both E. sal-
sugineum genotypes (Fig. 4.2C; Additional file 2). We also tested whether any genes showed a
similar pattern of drought-responsive expression during the progressive drought protocol. Fig-
ure 4.3 shows that only 13 DEGs displayed the same expression patterns, with eight showing in-
creased transcript abundance following water deficit and decreased abundance under watered/re-
watered conditions (Fig. 4.3A,B) while five DEGs showed the inverse response (Fig 4.3C,D). For
the eight DEGs undergoing increased transcript abundance with water deficit, the transcript
levels in well-watered Yukon plants were typically already higher relative to those detected in
well-watered Shandong plants, notwithstanding the drought-responsive increases found for both
ecotypes (Fig. 4.3A,B).
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Figure 4.3: Average estimated FPKM values of DEGs identified by DESeq2
that follow the same direction of fold change in both E. salsugineum ecotypes.
Standard error of the expression values are represented by grey error bars.
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4.4.3 Correlating altered gene expression with biological responses to
water deficit

MacLeod et al. (2014) reported that the initial exposure to water deficit (D1) altered the way
that Yukon plants responded to the second water deficit (D2). For example, both leaf water
content and leaf ψs were different for Yukon plants during D2 compared to D1. Conversely,
Shandong plants responded similarly to the two drought exposures with no discernible changes
in leaf water content or leaf ψs. Moreover, Yukon leaves took longer to wilt relative to leaves
of Shandong plants during D2 relative to D1. Longer times to wilt following an initial drought
episode suggest that Yukon plants underwent changes during D1 that improved their water
holding capacity during subsequent water deficits. Thus we hypothesized that the transcriptional
response of Yukon plants would be distinctive between D1 and D2, whereas D1-associated changes
in Shandong plants would likely be repeated during D2. This prediction, however, was not
consistent with the DEGs identified in Figure 4.2. Rather, we found that only about half of the
genes differentially expressed in D1 in Shandong plants were also differentially expressed in D2,
despite the fact that many more genes (over 78-fold more) were differentially expressed in D2
compared to D1. Conversely, only a two-fold increase was found for DEGs in leaves of Yukon
plants when comparing D2 to D1 with over half (630 or almost 60%) of the DEGs showing
drought-responsive expression during both stages of the progressive drought treatment.

We considered that differential gene expression analysis is limited to pairwise comparisons
and hence would not identify groups of co-expressed genes that may contribute to insights into
the unique drought responses of the Yukon and Shandong E. salsugineum genotypes. As such,
a weighted gene co-expression network analysis (WGCNA) was used to cluster genes using esti-
mated transcript abundances during the progressive drought treatment conditions. WGCNA is a
systems biology analysis method that assumes co-expressed genes that belong to the same cluster
have a similar function. This “guilt-by-association” approach can help predict functionality of
un-annotated protein-coding or lncRNA-coding loci with information on the directionality (up-
or down-regulated) of their possible roles during each treatment condition. For this analysis,
expression estimates from all genes as opposed to only DEGs were used to allow for an unbiased,
unsupervised clustering method with a summary of the results shown in Figure 4.4. Eigengene
values, summary statistics calculated using a dimensionality reduction method similar to PCA,
were used to quantify the “average” gene expression values of each cluster. Using these cluster
eigengene values, we correlated each gene cluster to drought treatment and ecotype (Additional
file 3) and then selected clusters with 50% or more DEGs for gene ontology (GO) term enrich-
ment analysis (Table S3.1). A reduced list of highly significant biological processes in selected
clusters was produced using REVIGO (Supek et al. 2011) and the results are summarized in
Additional file 4.

The heat map of cluster eigengene correlations to drought treatment (Fig. 4.4) shows cor-
relations of ecotype and eigengenes grouping separately, suggestive of distinct responses to the
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Figure 4.4: WGCNA cluster heatmap illustrating correlations of cluster eigen-
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progressive drought treatment by Shandong and Yukon plants. Moreover, the heat map also
shows the correlated data for drought (D1, D2) and watered (WW1, WW2) treatments being
grouped separately for Yukon plants whereas for Shandong plants the WGCNA results grouped
both drought treatments together with the well-watered control (WW1) plants. Consistent with
different drought response strategies for the two ecotypes, only one cluster containing at least
50% DEGs, “coral1”, also showed significant correlation to the same stage of drought treatment
(D2) for both ecotypes (Fig 4.4; Table S3.1). The “coral1” gene cluster is significantly enriched
in GO terms relating to sulfur assimilation and sulfur utilization which infers a common connec-
tion between sulfur nutrition and a more prolonged exposure to drought stress (Additional file
4). Identifying only one ecotype-overlapping cluster suggests that groups of co-expressed genes
are more highly correlated to a single ecotype and not shared by both ecotypes, an interpreta-
tion consistent with Shandong and Yukon plants expressing genes with different functions during
drought. By way of example, genes of the “lightyellow” cluster are only correlated for the drought
response of Shandong plants and interestingly, the clustered genes are negatively correlated with
D2 but positively correlated with WW2 (Fig. 4.4; Table S3.1). This associated set of correlated
differences is particularly relevant given the DEGs summarized in Figure 4.2A. Shandong plants
did not significantly alter their gene expression during the initial drought exposure (D1) but a
re-watering treatment following D1 and subsequent drought (D1→WW2→D2) triggered major
transcriptional changes. The “lightyellow” cluster is composed of genes associated with metabolic
processes, with the most significant GO terms associated with lipid biosynthetic processes, and
ketone and carbohydrate metabolic processes (Fig 4.4; Table S3.1; Additional file 4). The direc-
tionality of the correlated transcriptional changes suggests that biosynthetic pathways promoted
by re-watering were subsequently reversed by the second drought (D2).

For Yukon plants, co-expressed genes positively correlated with both D1 and D2 are grouped
in the “turquoise” cluster (Fig 4.4; Table S3.1). Containing 3415 co-expressed transcripts,
“turquoise” is the largest identified cluster and is enriched in genes associated with water depri-
vation, peptide transport, and cellular lipid catabolic processes (Additional file 4). The category
“lightcyan1” offers a different type of response in being populated by genes negatively correlated
to D2 in Yukon plants but also positively correlated to a re-watering (WW2) response in Shan-
dong plants (Fig 4.4; Table S3.1). The “lightcyan1” cluster is comprised of genes associated with
proteolysis and negative regulation of catalytic activity, offering an indication of related func-
tions elicited by the recovery of Shandong plants from water deficit as compared to Yukon plants
(Additional file 4). In contrast, both “purple" and “blue" clusters are only positively correlated to
the re-watering (WW2) response for Shandong plants (Fig 4.4; Table S3.1). The “purple” cluster
is highly enriched in genes associated with translation and DNA packaging and replication while
genes in the “pink” cluster are related to cell cycle regulation, vitamin biosynthetic processes,
nucleoside-related biosynthetic processes, and photosynthesis (Additonal file 4). Thus the broad
functionality of the Shandong-specific recovery associated clusters reflects the large transcrip-
tional response of Shandong plants transitioning from D1 through WW2 (Fig. 4.2, Additional
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file 4). On the other hand, there is a notable lack of significant correlation of Yukon re-watered
plants to any clusters primarily encompassed by DEGs (Fig. 4.4; Table S3.1) although Yukon
plants, like Shandong plants, continued to grow during the entire progressive drought treatment
(MacLeod et al. 2014).

4.5 Discussion

In this work, we hypothesized that E. salsugineum ecotypes would have different global ex-
pression responses to a progressive drought, hinted at by different expression patterns of select
dehydrins during the same progressive drought treatment (MacLeod et al. 2014). MacLeod
et al. (2014) also reported overall differences in the physiological responses of E. salsugineum
ecotypes during the progressive drought protocol. For example, Yukon plants grown in con-
trolled environment chambers were found to respond to an initial drought by a 46% reduction
in stomatal conductance and 25% reduction in rosette water loss relative to unstressed control
plants, evidence of drought avoidance to conserve water (MacLeod et al. 2014). Upon wilting,
Yukon plants re-established turgor at significantly lower leaf solute potentials than the level for
consistently well-watered Yukon plants which suggests osmotic adjustment. In contrast, while
Shandong plants also showed signs of undergoing drought avoidance, the leaf solute potentials
in re-watered Shandong plants returned to pre-drought levels after re-watering. Thus while the
physiological responses during D1 seemed similar for both ecotypes, their distinct responses are
more clearly seen during subsequent exposure to drought where Yukon plants take longer before
turgor is lost relative to Shandong plants. In this regard, the very different transcriptional re-
sponses that we observed for the plants of two ecotypes during a first drought (D1) is particularly
notable. That is, with the initial drought exposure, about 1100 differentially expressed genes
were detected in leaves of Yukon plants compared to only 63 in Shandong plants (Fig. 4.2A,B).
Following recovery with re-watering (WW2) and subsequent exposure to a second drought (D2),
1866 genes were differentially expressed in leaves of Yukon plants while Shandong plants now
underwent a much larger transcriptional response with almost 5000 genes showing differential
expression. While there is overlap between transcriptional changes of both ecotypes, most of
the DEGs are unique to each genotype (Fig. 4.2C). The approach of using a progressive drought
regime was valuable in that, if it had not been used, we would not have appreciated the large
differences in gene expression changes observed in the Shandong ecotype in comparison to Yukon
plants upon a second exposure to a water deficit.

Progressive drought protocols have been used to study transcriptional reprogramming of
alfalfa (Kang et al. 2011) and switchgrass (Meyer et al. 2014). These studies both show that
fewer genes are differentially expressed during recovery from drought than during a severe water
deficit. This is not consistent with our finding of a higher number of DEGs identified in both
Yukon and Shandong plants that were re-watered (WW2) relative to plants undergoing an initial
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drought (D1) (Fig 4.2A,B). This difference between the earlier work on alfalfa and switchgrass
and our research with E. salsugineum is especially evident in Shandong plants, where the 63
DEGs identified during D1 are followed by over 3600 DEGs in plants that were re-watered
and allowed to recover. One potential explanation that could explain the strong differential
response by Shandong plants may relate to the extent by which these plants perceive the initial
drought. Specifically, MacLeod et al. (2014) found that physiological measurements of Shandong
plants (including cut rosette water loss, static leaf water content, and specific leaf area) during
D1 were not different from the same measurements of well-watered, control Shandong plants.
This negligible physiological response suggests that Shandong plants were either not stressed
or did not sense the severe water stress imposed at D1 at 10% FTSW and hence few DEGs
were associated with the SWW1 → SD1 transition (Fig. 4.2B). The comparatively stronger
transcriptional responses of Yukon plants during D1 and upon re-watering implies that what
happens during drought is largely reversed during recovery, an inference that is largely borne
out by the data. For example, 62% of the 429 genes up-regulated and 75% of the 656 down-
regulated genes in Yukon plants identified during D1 showed altered expression in the opposite
direction during re-watering. This observation led us to question why more genes show changed
expression during D2 compared to D1 in Yukon plants (Fig. 4.2). We originally predicted that
the changed expression patterns of many genes may not return to pre-stress levels, and indeed
43% of the 429 genes up-regulated during D1 were also up-regulated during D2. However, when
looking specifically at genes associated with drought for both ecotypes (Fig. 4.3) we see that genes
induced during D1, although still differentially expressed in the second drought, show levels of
expression that are lower in Yukon plants during D2. This behaviour is exemplified by two of
the genes encoding dehydrins selected for RT-qPCR analysis, namely EsRAB18 and EsRD29A,
where drought-responsive changes in transcript abundance for Yukon plants are lower at D2
relative to D1 (Fig. S3.2). Conceivably, whereas re-watering returns plants to the same water
status achieved before drought, the transcriptional reprogramming during D1 has an enduring
impact that may benefit Yukon plants during subsequent stress exposures.

As discussed earlier, MacLeod et al. (2014) reported that Yukon plants tolerate repeated
drought exposure better than Shandong plants with benefits seen in solute accumulation and
a longer time taken before turgor loss. However, the stress protective effect is not specific
to drought. Exposure of Yukon plants to an initial drought treatment improves the freezing
tolerance of Yukon plants from -19C to -21C with a shortened cold acclimation period (Griffith et
al. 2007; Khanal et al. 2017). By not fully reverting to pre-stress levels, the constitutive expression
of stress-responsive genes may enable the plant to retain a complement of gene products that
serve as a “molecular buffer” for prolonged stress protection, products that may promote a greater
coping capacity should the stress return. This further implies that Yukon plants, once stressed
by exposure to water deficits, are no longer “naive” to stress and that their tolerance to other
sources of adverse abiotic or biotic conditions can be improved. By way of contrast, the expression
patterns for EsRAB18, EsRD29A, and EsRD22 were very different in Shandong plants compared
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to Yukon plants (Fig. S3.2). The ecotype-specific expression changes are particularly evident in
the expression of EsRAB18 and EsRD29A where their relative transcript levels remain high
in Shandong re-watered plants (WW2), but are downregulated Yukon plants experiencing the
same re-watering treatment. This pattern of expression appears to be shared by a large number
of drought-responsive genes given our finding of a large increase in gene expression changes in
Shandong plants at WW2 and D2 (Fig. 4.2B). This different transcriptional response suggests
that Shandong plants, unlike Yukon plants, may not be appropriately “primed” by the water
deficit stress during D1 and, by consequence, are less able to cope with stress during the D2
treatment relative to Yukon plants.

We used WGCNA and the “guilt-by-association” approach to address the global transcrip-
tomes in order to identify genes undergoing significant changes in expression during the progres-
sive drought protocol for insight into their predicted functionality. By way of examples, cuticular
waxes have been shown to be altered in a drought-responsive manner in a comparative study us-
ing Shandong and Yukon E. salsugineum plants (Xu et al. 2014). Xu et al. (2014) reported that
the two ecotypes alter the composition and amount of cuticular waxes between non-stressed and
drought-stress conditions with Yukon plants exhibiting a 4.6-fold increase in leaf wax content,
although both ecotypes showed increases in the total amount of wax. MacLeod et al. (2014) did
not measure cuticular waxes to an enhanced drought tolerance in Yukon plants but rather focused
on a variety of physiological changes including differences in accumulated solutes with drought
exposure. Our WGCNA distinguished clusters of co-expressed genes relevant to the studies just
described. The “lightyellow” cluster is negatively correlated to SD2 and positively correlated to
SWW2 (Table S3.1) and contained genes enriched in functions associated with ketone metabolic
processes (Additional file 4). Indeed, the DEGs found in the “lightyellow” cluster were signifi-
cantly increased in abundance in re-watered conditions and decreased in drought conditions in
both Shandong and Yukon plants. While these transcriptional changes in the direction of ex-
pression cuticular of wax-related genes seems counter intuitive, studies exploring the regulation
of wax biosynthesis in rice describe DROUGHT HYPERSENSITIVE (DHS), encoding a RING-
type E3 ligase, as a negative regulator of wax biosynthesis (Wang et al. 2018e) and hence its
overexpression reduces drought tolerance in transgenic rice lines. DECREASE WAX BIOSYN-
THESIS (DEWAX) is a transcriptional repressor of wax production with over-expression also
reducing wax deposition (Go et al. 2014). Thus the enriched status of the “lightyellow” cluster
by putative wax-related gene products may indicate that plants recovering from drought-stress
are better positioned with respect to their capacity to alter cuticular wax composition and/or
content, rather than a reflection of changes in the activity of wax-related biosynthetic processes
themselves. Plants like Yukon E. salsugineum that are adapted to dry environments are classi-
cally known to develop thick cuticular waxes but the regulatory mechanisms responsible remain
a topic of considerable interest and are likely very complex as suggested in a recent review by
Xue et al. (2017).

Among the transcripts clustered by WGCNA were lncRNAs. LncRNAs are proposed to
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function as gene expression regulators, particularly in organisms experiencing stress (Xu et al.
2017b). In this study the two E. salsugineum ecotypes display different transcriptional responses
to water deficits. Hence, we predicted that there should be differences in lncRNA expression
in the plants undergoing the progressive drought treatment. Unexpectedly, we found an almost
complete lack of overlap in the drought-associated lncRNAs expressed in Yukon and Shandong
plants. This finding of negligible overlap among lncRNAs is perhaps not surprising given their
fast evolution (Hezroni et al. 2015) and extreme conditions that have led to the local adaptation
of E. salsugineum ecotypes to different natural environments. We particularly focused our anal-
ysis on genes associated with the “turquoise” cluster, a group positively correlated to D1 and
D2 drought treatments in Yukon plants. The “turquoise” cluster was functionally enriched in
genes with GO terms associated with plant response to water deprivation, including responses to
abscisic acid (ABA). The “turquoise” cluster contains 36 differentially expressed putative lncR-
NAs, 30 of which are up-regulated during both drought treatments. Eight of the drought-induced
lncRNAs are only differentially expressed in Yukon plants whereas 18 are specific to Shandong
plants indicating that both ecotypes deploy distinct lncRNAs in response to the same stress
treatment protocol. The “turquoise” cluster was enriched in GO terms with functions similar to
a previously identified lncRNA, drought induced lncRNA (DRIR), first identified in A. thaliana
(Qin et al. 2017). We did not find evidence of genes in this cluster with sequence homology to
DRIR indicating the gene products we described are most likely previously unidentified water
deficit stress-associated lncRNA transcripts.

Interestingly, we found only 13 drought-responsive genes that display similar expression pat-
terns in both Shandong and Yukon plants. Of the eight genes that display a positive response
to drought (Fig. 4.3A,B), all but one, Thhalv10020335m.g, are found in the “turquoise” clus-
ter that is enriched in drought-related genes. We explored the functions of the overlapping
genes as we hypothesized that these products may be part of a conserved drought response for
Eutrema and likely other plants. Thhalv10024122m.g, is homologous to the A. thaliana gene
AT2G38800.1 and encodes a plant calmodulin-binding protein that has previously been char-
acterized by Lovell et al. (2015) as a quantitative trait locus (QTL) associated with drought
in A. thaliana. Thhalv10003296m.g (AT5G43150) is a predicted mitochondiral protein with
no known function, however, this gene is expressed under a variety of abiotic stresses in both
A. thaliana and Oryza sativa, consistent with a role in a conserved stress response throughout
plants (Narsai et al. 2010). Using a combined expression ranking and co-expression analysis,
Ransbotyn et al. (2015) also identified AT3G57540 (Thhalv10006130m.g) to be stress respon-
sive, and found its expression to cluster with other ABA-responsive genes, a finding similar to
this work. Thhalv10023585m.g (AT1G60470) and Thhalv10024122m.g (AT5G43150) are both
annotated as encoding galactinol synthases, enzymes known to act in the biosynthesis of raffinose
family oligosaccharides, known osmoprotectants in plants (Nishizawa et al. 2008) and hence likely
playing a similar role in osmoprotection for E. salsugineum experiencing drought. Galactinol and
raffinose accumulate during stress treatments in leaves of E. salsugineum and these metabolites
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are detected in E. salsugineum plants collected at a highly saline Yukon field site (Guevara et
al. 2012). Rasheed et al. (2016) identified AT1G34060 (Thhalv10010020), a tryptophan amino-
transferase, to be upregulated during drought, as well as other auxin-related genes, similar to
Thhalv10024601 (AT4G30080), an auxin response factor. Thus the comparatively small group
of drought-induced genes shared by both ecotypes are well-known to be associated with osmotic
stress. Of additional interest for this group of drought-responsive genes is the differences in their
expression levels between the two ecotypes with the comparatively muted transcriptional changes
detected for Shandong plants relative to Yukon plants with drought stress (Fig. 4.3).

4.6 Conclusion

Although Yukon and Shandong E. salsugineum plants are both halophytes, several studies show
that they do not respond similarly to abiotic and biotic stress. For example, these E. salsug-
ineum ecotypes modulate their photosynthetic responses to light and temperature differently
(Khanal et al. 2017) and, as discussed in this work, they respond to water deficits by divergent
mechanisms as shown by differential alterations in wax composition and water use (Xu et al.
2014; MacLeod et al. 2014). There is also recent evidence that Shandong E. salsugineum is not
as well equipped for drought tolerance relative to Yukon E. salsugineum, and even A. thaliana
(MacLeod et al. 2014; Xu et al. 2014; Pinheiu et al. 2019). Similarly, Shandong plants show
greater constitutive resistance to infection by Pseudomonas syringae than Yukon plants indi-
cating that these ecotypes also diverge with respect to their responses to biotic stress (Yeo et
al. 2015). Moreover, the potential for Yukon E. salsugineum to retain a “molecular memory”
conferred by an early exposure to stress appears to be a distinguishing feature of this ecotype.
This priming response would have an advantageous role for an extremophyte that likely already
invests heavily to survive the extreme conditions that are endemic features of its semi-arid and
subartic natural habitat.

As more is known about extremophyte species in general, it may become clearer whether other
plants are similarly equipped to use drought exposure to significantly augment their tolerance
to the same or different stress exposures, a capacity that would be advantageous for plants such
as Anastatica hierochuntica, an extremophyte species that displays considerable cross-tolerance
to salt though it naturally grows in a desert (Eshel et al. 2016). Certainly, as recently reviewed
by Sork (2018), “-omics” technologies are now offering deeper insights into mechanisms under-
lying local adaptation and they can be readily applied to both model and non-model species.
Our comparison between the drought responses of Yukon and Shandong plants shows that even
extremophyte plants adapted to extreme environments display elements of local adaptation and
that ongoing studies of their overlapping and contrasting responses could help discern the un-
derlying mechanisms responsible.
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4.7 Materials and Methods

4.7.1 Plant growth conditions and drought simulation assay

Shandong and Yukon E. salsugineum plants were grown in a controlled environment growth
chamber and subjected to a drought simulation assay consisting of two periods of water deficit
separated by a two-day recovery period (MacLeod et al. 2014). Water was withheld from four-
week-old plants to initiate the first drought treatment (D1). The progress of the drought treat-
ment was monitored gravimetrically and the FTSW was determined. FTSW was maintained at
approximately 100% for well-watered, control plants. Plants undergoing drought treatment were
water deprived until FTSW reached 0% and the plants visibly wilted. The re-watering treatment
was started on the day a plant wilted and FTSW was restored to 100% within 48 h (WW2).
After 48 h, water was again withheld from plants to begin the second drought treatment (D2).
A set of plants of each accession was watered daily over the course of the entire experiment and
served as well water control plants.

4.7.2 Selection of plant tissue for transcriptome profiling

Only fully-expanded rosette leaves were harvested from both Yukon and Shandong plants. Leaf
samples used for RNA extraction were collected between 8 and 10 h into the day cycle under
our cabinet conditions. Once harvested, the leaf tissue was flash-frozen in liquid N and then
transferred to a freezer for long term storage at -80C. Leaves for RNA extraction were collected
at three stages of the water deficit protocol. Plants were harvested during the initial water deficit
(D1-10% FTSW, during recovery (WW2-100% FTSW), and during the second water deficit (D2-
10% FTSW). In addition, leaf tissue was harvested from four well-watered control plants with
one plant harvested when drought-treated plants had reached D1-10% FTSW and the final three
control plants at the WW2-100% stage of the drought protocol. The difference in age between
these control plants was 5 days.

4.7.3 RNA extraction cDNA library construction and transcriptome
assembly

Total RNA was extracted from frozen leaves using a modified hot borate method (Wan and
Wilkins 1994) as described in Champigny et al. (2013). RNA quantity and integrity was assessed
using RNA Nano 6000 chips on a Bioanalyzer 2100 instrument. Two mRNA purification protocols
were performed depending on sequencing date: A. Three successive on-column purifications using
the Genelute mRNA miniprep kit (Cat. No. MRN10, Sigma) or B. NEBNext Poly(A) mRNA
Magnetic Isolation Module (E7490). Both mRNA purification protocols were followed by the
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NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (E7760). Preparation of
cDNA libraries was performed with the NEBNext multiplex cDNA synthesis kit for Illumina
using random hexamers (Cat. No. E7335, New England Biolabs, Ipswich, MA). The cleanup
of fragmented RNA was performed with Agencourt AMPure XP Beads (Cat. No. A63987,
Beckman Coulter, Mississauga, ON) following the manufacturer’s protocol.

Quality control, amplification, and sequencing of the 31 cDNA libraries from cabinet-grown
plants was conducted at the sequencing facility of the Farncombe Family Digestive Health Re-
search Institute (McMaster University, ON, Canada). A combination of two high-output and
three rapid paired-end sequencing runs using a 100 or 150 bp length were performed using the
Illumina Hi-Seq 1500 platform. The libraries are identified by accession (Y or S), drought stage
(WW1, D1, WW2, D2), and plant number (1, 2, 3, or 4).

Following sequencing, the reads obtained were trimmed of Illumina adaptor sequences and
low quality reads with default settings of Trimmomatic v0.34 (Bolger et al. 2014). Only reads
≥ 36 bp after trimming were mapped to the JGI E. salsugineum genome assembly downloaded
from Phytozome v12.1 (Goodstein et al. 2012; Yang et al. 2013) using STAR v2.5.2b (Dobin et al.
2013). We used StringTie 1.3.4d (Pertea et al. 2015) for transcript assembly on each individual
RNA-Seq library to identify transcripts missing from the E. salsugineum reference annotation.
Library-specific transcripts called by StringTie were merged with each other and the reference
annotation using StringTie --merge default settings.

Assembled transcripts that were not found in the E. salsugineum reference annotation, or
were not previously identified by Champigny et al. (2013), were considered novel transcripts
and have the locus identifier-prefix “DLOC”. The merged GTF annotation file that included all
novel transcripts, those identified by Champigny et al. (2013), and those found in the reference
annotation was created and used for consequent transcript abundance estimates and is available
in Additional file 5. The merged GTF file was compared to the reference annotation using
gffcompare and only those transcripts classified as “unknown” and “intergenic” were retained
for further analysis to reduce errors caused by mapping, assembling, or sequencing of unprocessed
transcripts.

4.7.4 Determination of transcript abundance

Gene expression estimates for transcripts that met our classification criteria (i.e. in reference
annotation, “unknown” or “intergenic”) were calculated using RSEM v1.2.31 (Li and Dewey
2011) and an internal call for mapping to the transcriptome using RNA-Seq aligner STAR v2.5.2
(Dobin et al. 2013) to accommodate the ambiguity of multi-mapping reads. Gene level transcript
abundance is reported as the number FPKM, a determination accounting for both mRNA length
and library size (Trapnell et al. 2010). FPKM estimates for each gene were calculated using
expected counts and the median length of each transcript considering all RNA-Seq libraries.
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4.7.5 lncRNA prediction

Single nucleotide polymorphisms (SNPs) were also called separately for both E. salsugineum eco-
types following GATK’s best practices (VanderAuwera et al. 2013) for RNA-Seq data (Accessed
September 1, 2018). Reads were mapped to the E. salsugineum genome, rather than tran-
scriptome, with STAR v.2.5.2b (Dobin et al. 2013) using splice site junctions identified by the
first read mapping step as suggested GATK’s best practices. SNPs were called individually for
each library and were merged into a genotype-specific single variant calling file for downstream
analyses. SNPs were filtered using GATK’s VariantFiltration software to flag: clusters of
three of more SNPs in 35 base pair windows, QualByDepth (QD) <2 and FisherStrand (FS)
>30. Using a custom Python script, only homozygous SNPs that were not flagged and found
in the majority of each genotype’s cDNA libraries were retained. VCFtools (Danecek et al.
2011) was used to create new genome consensus files for each genotype containing the consensus
filtered SNPs. Transcript sequences for each ecotype were extracted using the individual geno-
type genome files and merged annotation files. Each transcript was then input into CREMA
(https://github.com/gbgolding/crema) (Simopoulos et al. 2018) for lncRNA prediction. Because
CREMA uses a scoring system for lncRNA prediction, only those transcripts with a prediction
score > 0.5 were considered putative lncRNAs.

4.7.6 Multivariate analysis

Statistical analyses on gene expression data was performed using R v3.5.1 (R Core Team 2018)
using FPKM values shifted by a constant of 1 to allow the data to be log2 transformed. Nor-
malization was used to to account for the disparity in transcript abundance for genes with very
low or very high expression. PCA was performed on the covariance matrix for all genes detected
across the 31 RNA-Seq libraries of both E. salsugineum ecotypes subjected to the progressive
drought treatment in order to explore variation within and between the transcriptomes with
regards to gene expression estimates. Log2 transformed FPKM values for transcripts associated
with 28,712 genes were treated as variables while each of the 31 cDNA libraries were treated as
observations.

4.7.7 Detection of differentially expression genes

DEGs were called using the DESeq2 Bioconductor package (Love et al. 2014) using a FDR of
0.05 (Champigny et al. 2013). To control for a potential batch effect due to differences in library
preparation protocols, library preparation type was added to the DESeq2 regression formula.
In addition, a threshold was set for differentially expressed genes to reduce predictive error
that may arise with biological variance. In a differential expression test between Condition
A vs Condition B, all genes identified as “upregulated” must have gene expression estimates
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> 1 FPKM in Condition A. Similarly, all genes identified as “downregulated” must have gene
expression estimates > 1 FPKM in Condition B. DEGs were identified in all biologically relevant
drought progression transitions (i.e WW1 vs D1, D1 vs WW2, WW2 vs D2).

4.7.8 Weighted gene co-expression network analysis and GO term
enrichment

A gene co-expression network was inferred from untransformed FPKM values of all expressed
transcripts using the WGCNA R package (Langfelder and Horvath 2008). A “signed hybrid” net-
work was constructed in a blockwise manner using a maximum block size of 10,000 genes, a
soft threshold power of 9, minimum module size of 30, and a merge cut height value of 0.25.
Gene expression clusters were summarized using an eigengene value equal to the first principal
component of gene expression values contained in each cluster. Cluster eigengene values were
correlated to each ecotype’s progessive drought treatment status in order to identify genes asso-
ciated with an ecotype and/or drought treatment. Correlation of treatments was also clustered
using hierarchical clustering. Eight clusters composed of over 50% of the previously identified
DEGs were chosen for further investigation (Table S3.1).

The DEG-containing clusters were used to identify significantly enriched GO terms based
on custom GO term annotation. Because homology with A. thaliana genes was used for GO
term assignment, we used a reciprocal best BLAST hit approach to annotate novel transcripts
identified in our cDNA libraries with A. thaliana loci. The most recent A. thaliana GO
terms were downloaded from TAIR on November 12, 2018 (https://www.arabidopsis.org/

download/index-auto.jsp?dir=/download_files/GO_and_PO_Annotations). E. salsugineum
genes were annotated with A. thaliana GO terms using A. thaliana loci available from Phy-
tozome v12.1.5, annotation provided by Champigny et al. (2013) and the annotation of novel
transcripts by reciprocal best BLAST hit. GO term enrichment of each of the eight clusters
was called using the topGO R package (Alexa A 2018) using the Benjamini and Hochberg (1995)
FDR set at a 0.05 significance threshold. Redundancy of enriched GO terms was reduced using
the Revigo webserver (Supek et al. 2011), using the A. thaliana GO term database size and an
allowed SlimRel maximum measure of 0.4. FDR adjusted p-values of the enriched GO terms
were also used in the GO term summary process.
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4.14.1 Additional files

Additional file 1: Figures and tables found in Appendix C.
Additional file 2: .xlsx, significant DEGs identified at all biologically relevant drought progression
stages.
Additional file 3: .xlsx, DEG composition of all clusters.
Additional file 4: .xls, GO enrichment of selected clusters.
Additional file 5: .gtf, New E. salsugineum genome annotation containing XLOCs identified by
Champigny et al. (2013) and novel DLOCs.
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5.1 Thesis summary

Long non-protein coding RNAs (lncRNAs) are essential players in development and stress re-
sponses, yet they remain understudied in plant systems compared to animal systems. Research
on this RNA classification is difficult partly due to their fast evolution and thus lack of overall
sequence homology observed in these transcripts (Derrien et al. 2012). To acknowledge and at-
tempt to remedy the discrepancy in lncRNA knowledge between plant and animal species, I first
introduced a lncRNA prediction tool that uses an improved machine learning methodology. The
tool was trained only on empirically validated lncRNA sequences from all species, including the
nine lncRNAs of plant-origin available at time of publishing. The final stacking generalizer used
by the prediction tool was evaluated using 10-fold cross validation of the training dataset and re-
sulted in over 96% accuracy (Table 2.3). LncRNAs from Arabidopsis thaliana, Oryza sativa, and
Eutrema salsugineum were predicted using the tool and were compared to predictions available
from GreeNC, an established plant lncRNA database (Paytuvi-Gallart et al. 2016). Unlike our
machine learning tool, GreeNC uses a transcript filtering approach to lncRNA prediction and
considers all transcripts that meet an arbitrary feature cutoff as a lncRNA. Thus we expected
our tool to predict fewer lncRNAs since the stacking generalizer was trained on known, func-
tional lncRNA sequences and was not imposed to classification “rules” a priori. Consistent with
this expectation, we predicted a smaller number of lncRNAs than GreeNC, although extensive
overlap of the predictions was observed (Figure 2.2).

The lncRNA prediction tool, herein referred to as Classifying RNA by Ensemble Machine
learning Algorithm (CREMA), was applied to RNA sequencing data to answer three main ques-
tions:

1. If lncRNAs are not conserved by nucleotide sequence, is there evidence of phylogenetic
signal in the molecular traits of lncRNAs?

2. Are lncRNAs adequately represented in the reference annotation of plant species?

3. What are the transcriptional contributions, both coding and non-coding, to two unique
drought tolerance strategies of two natural accessions of E. salsugineum, an extremophile
plant species?

To answer these questions, CREMA was first applied to RNA sequencing data of plant species
with diverse evolutionary histories. Novel transcripts assembled from RNA sequencing data and
transcripts available in reference annotation were used in the analysis. We predicted lncRNAs
using both data sources to quantify the number of lncRNAs that are present and missing from
the annotation of a subset of plant species. In our tested plant species, on average, 6.4% of
all assembled and annotated transcripts were predicted as lncRNAs, a larger percentage than
the estimated 1% in human genomes (Kapusta and Feschotte 2014). However, the lncRNA
contributions in plant genomes ranged greatly, from 3% in E. salsugineum to almost 17% in
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Amborella trichopoda (Table 3.2). The percentages of lncRNAs that were not present in their
appropriate species genome annotations also ranged significantly, from 4.5% novel lncRNAs in
A. thaliana to over 99% in Solanum tuberosum (Figure 3.1). Because lncRNA evolution is not
well understood, and lncRNAs typically display less sequence conservation than protein coding
genes, we looked for phylogenetic patterns in molecular traits on lncRNAs rather than nucleotide
sequence. Specifically, phylogenetic signal estimates were calculated to determine if phylogenetic
relationships can explain the variances observed in transcript length, open reading frame (ORF)
length, GC content and exon numbers in predicted lncRNAs and all other transcripts in the
assembled transcriptomes of the tested species. The results suggested inconsistent and unclear
phylogenetic signal patterns of lncRNA trait values compared to the consistently high and signif-
icant phylogenetic signals detected in all other transcripts. In addition, this comparative study
introduces the possibility that extremophyte species, such as E. salsugineum and Boea hygromet-
rica, require fewer lncRNAs than the average plant species. Both species are naturally tolerant
to abiotic stresses (Kazachkova et al. 2018; Xiao et al. 2015) and have the smallest percentage
of transcripts predicted as lncRNAs (Table 3.2). This is unexpected as there are associations
between stress responses and lncRNA expression (Xu et al. 2017b).

To further explore the relationship between predicted lncRNA numbers in E. salsugineum and
a stress response, we sequenced the RNA of two natural accessions of E. salsugineum subjected
to a progressive two-stage drought treatment previously described by MacLeod et al. (2014).
While E. salsugineum genotypes are considered to be naturally tolerant to drought, the two
studied ecotypes, Yukon and Shandong, have unique physiological responses to water stress that
are most evident after a second drought treatment. In fact, MacLeod et al. (2014) suggested
that the two tested ecotypes display different drought response strategies, with Yukon plants
displaying drought tolerance and Shandong drought avoidance. Using RNA sequencing, we
detected 919 lncRNAs expressed at one point during the progressive drought treatment, of which
just under 8% are present in the E. salsugineum reference annotation. Differentially expressed
genes (DEGs) were identified at biologically relevant conditions (i.e WW1 vs. D1, D1 vs. WW2,
WW2 vs. D2). In keeping with the physiological responses found for the two ecotypes, the DEGs
profiles of Yukon and Shandong plants did not generally display overlap with each other. The
differences regarding DEGs are particularly evident in the responses to a D1 where Yukon plants
displayed 17-fold more DEGs compared to Shandong plants. Only 14% of DEGs detected at any
drought transition stage were shared by both ecotypes and only 14 of these genes were predicted
to be lncRNAs. This low overlap of lncRNAs indicates that different lncRNAs were induced
by each ecotype during the drought treatment. A weighted gene co-expression network analysis
(WGCNA) was also constructed to identify clusters of genes that co-express and correlate to
the drought responses of each ecotype. A single gene cluster correlated to the same condition in
both ecotypes in the same direction, again suggesting that each natural accession also induced
unique groups of genes during the responses to both drought treatments. Finally, functional
enrichment of the identified gene clusters allowed for functional prediction of lncRNAs involved
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in each ecotype’s drought response that can be used in future lncRNA validation studies.

5.2 Insights on current and future lncRNA research

The lncRNAs described in this dissertation remain computationally predicted, however lncR-
NAs that have been empirically characterized by other studies have displayed similar molecular
characteristics as our predictions. In fact, although a general definition of lncRNAs exists, there
remains few set rules or agreed-upon classifications for long non-protein coding transcript iden-
tification. For example, St. Laurent et al. (2015) described over 50 overlapping classifications
of lncRNAs that group lncRNAs by genome location, function, and size. As a whole, lncRNAs
are transcripts that exhibit little sequence homology between species, have seemingly no consis-
tent distinguishing molecular feature cutoff values, and have multiple non-specific classifications.
However, the heterogeneity of lncRNAs may exist due to the presence of lncRNA families or sub-
classifications that have yet to be identified, which may stem from a lack of empirically validated
lncRNAs.

5.2.1 Putative lncRNA subclasses

Unlike small non-protein coding RNAs (ncRNAs), there are few described subclasses of lncRNAs.
However, the lncRNAs that encompass the small number of distinct subclasses typically exhibit
structural and functional homology. While there is controversy whether extensive lncRNA struc-
ture is conserved (Rivas et al. 2017), as discussed in a proceeding section, RNA structure in
general has long been considered a feature of functionality (Blythe et al. 2016). Fitting all crite-
ria of a lncRNA, riboswitches are a class of RNA commonly found in bacteria that regulate gene
expression in cis using their unique secondary structures (Nudler and Mironov 2004). Their
complex structure is categorized into two regions: the adaptamer domain and the expression
platform (Tucker and Breaker 2005). Typically forming multiple hairpin structures, the adap-
tamer domain binds to a ligand, usually a metabolite, and the expression platform transitions
into an active, or inactive structure for expression induction or repression (Nudler and Mironov
2004). Riboswitches are found extensively throughout eubacterial genomes and are classified
into families according to secondary structure, ligand-type, and function (Montange and Batey
2008).

Circular RNAs (circRNAs) represent another unique non-polyadenylated subclass of lncRNA.
While the exact mechanisms of biogenesis remain uncertain (Quan and Li 2018), circRNAs are
covalently linked RNAs that lack both a 5‘ cap and a poly-A tail due to their circular shape. Sim-
ilar to lncRNAs, circRNAs have a large range of validated functions from acting as endogenous
microRNA (miRNA) sponges (Hansen et al. 2013), to containing functional small ORFs (Cheku-
laeva and Rajewsky 2018). Similarly, topological anchor point RNAs (tapRNAs) are another
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class of lncRNA that exhibit similarity of molecular features. The tapRNA group was originally
defined as positionally conserved lncRNAs with transcription start sites preferentially located
within chromatin loops and CCCTC-binding factor anchors (Amaral et al. 2018). However,
tapRNAs were found to not only be syntenic and structurally conserved, but also demonstrated
nucleotide sequence homology with conserved functional motifs. Similarly, enhancer RNAs (eR-
NAs), transcribed from enhancer regions of protein coding genes, are another subclass of lncRNA.
eRNAs are typically shorter than an average lncRNA, do not undergo post-transcriptional pro-
cessing, and are proposed to induce transcription of their partner gene (Kim et al. 2015).

As lncRNA research progresses, novel classes or groups of lncRNAs are emerging. Con-
servation of molecular features within each class of lncRNA has been observed in riboswitches,
circRNAs, tapRNAs and eRNAs. While there is evidence that lncRNAs in general lack extensive
conservation in nucleotide sequence or molecular traits, our poor understanding of lncRNA evo-
lution may merely be a product of a lack of characterised lncRNAs and/or RNA subgroups. As
such, specific and non-arbitrary criteria for defining lncRNAs should be identified, and lncRNA
classes should ideally have specific, non-overlapping definitions. However, creating definitions
for lncRNA subgroups is not trivial and will require the continuation of empirical validation
and functional characterization. In addition, it is possible that lncRNAs should be categorized
according to functionality rather than structure. For example, circRNAs and lncRNAs have the
same range of functionally validated molecular mechanisms, but are considered different classes
of RNA (Hansen et al. 2013; Chekulaeva and Rajewsky 2018). We believe that the delivery of
scores on lncRNA predictions by CREMA offer a means for researchers to prioritize validation
experiments. As novel lncRNAs are characterized, they can be added to CREMA’s training
dataset which in turn will improve the model’s prediction accuracy.

5.2.2 Current reference genome annotations and lncRNAs

When we predicted lncRNAs in multiple plant species, we observed that the reference annotations
of less commonly studied plants typically did not contain the majority of predicted lncRNAs.
For example, over 99% of the lncRNAs predicted in S. tuberosum were not found in its reference
annotation (Figure 3.1). Conversely, the reference annotation of A. thaliana, a well studied model
plant, contained 95.5% of the lncRNAs identified in the study. Although most predicted lncRNAs
in A. thaliana are found in the reference genome, they are often functionally annotated as
transposable elements or pseudogenes rather than functional non-coding transcripts (Table 2.4).
While this may be somewhat expected, as lncRNAs can evolve from transposable elements (TEs)
(Kapusta et al. 2013), lncRNAs that are incorrectly functionally annotated may be contributing
to difficulties in lncRNA research. Further, the lncRNAs contained in the reference annotations
of less commonly-studied plant species, like E. salsugineum and O. sativa, typically lack any
functional annotation (described in Chapter 2). The issue of inadequate lncRNA annotation is
not unique to plant systems. As discussed in Chapter 3, Jackson et al. (2018) have also identified
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misannotation of human lncRNAs. A lack of lncRNAs available in reference annotations, or
lncRNAs incorrectly functionally annotated, impedes the progress of lncRNA research.

Although not a trivial solution, reference annotations of species with inadequate lncRNA
information should be updated on a regular basis. However, re-annotation would require a set
definition for lncRNAs that may require criteria that define lncRNA subclasses. Alternatively,
including lncRNA prediction statuses will benefit research until lncRNA subclasses have been
identified. In addition, although computational prediction is an important step towards empirical
validation, functional characterisation of lncRNA must continue, particularly to identify groups
of lncRNAs that share common characteristics.

5.2.3 The evolution of lncRNAs with conserved nucleotide sequences

It is accepted that lncRNAs display little sequence conservation, however, there are long non-
coding transcripts that exhibit at least small regions of homology. COOLAIR, a group of cold-
induced natural antisense transcript lncRNAs (NAT lncRNAs) involved with the regulation of
FLOWERING LOCUS C (FLC ), were first described in A. thaliana and remain some of the most
well studied plant lncRNAs (Swiezewski et al. 2009). COOLAIR transcripts are involved in the
vernalization response and are found on the opposite strand of the 3′ end of FLC , their target
gene. Interestingly, FLC is a MADS box transcription factor. There are two classes of COOLAIR
transcripts that are dependent on alternative splicing (Hawkes et al. 2016). Class I transcripts are
approximately 450nt, whereas Class II transcripts are longer at around 750nt. The complexity of
the evolutionary studies on COOLAIR transcripts within Brassicaceae species are great examples
of the unclear evolution of plant lncRNAs. COOLAIR transcript sequences are conserved within
Brassicaceae species, particularly in COOLAIR’s first exon that interacts with an R-loop involved
in regulation of the lncRNAs (Castaings et al. 2014). The 150bp region of sequence conservation
within exon 1 was found to be at the 3′ end of FLC , and was more conserved than expected when
considering other developmentally associated MADS box transcription factors that lack NAT
lncRNAs. This also indicates that the promoter involved in the regulation of COOLAIR and its
homologs in other Brassicaceae species is highly conserved. COOLAIR homologs in Arabidopsis
lyrata and Arabis alpina were cold-inducible and displayed similar expression patterns as observed
in A. thaliana.

The secondary structures of COOLAIR transcripts, determined by shotgun secondary struc-
ture determination, demonstrate conserved secondary structures within Brassicaceae species even
within regions of diverged nucleotide sequence (Hawkes et al. 2016). Interestingly, the pre-
dicted secondary structures of COOLAIR identified in A. thaliana, A. lyrata, Capsella rubella,
A. alpina, Brassica rapa and E. salsugineum were all similar, however, B. rapa contains a unique
central domain as it does not contain a conserved helix. Hawkes et al. (2016) suggests that the
conserved structure of COOLAIR transcripts supports the hypothesis that regions of conserved
structural similarity are involved in regulating FLC , and the variable length of the H4 helix is
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due to adaptation to natural environments. Although the sequences and secondary structures of
COOLAIR transcripts in multiple Brassicaceae species have been studied, A. thaliana is the only
species with transcripts deposited in NCBI. In fact, although Hawkes et al. (2016) amplified the
expression of COOLAIR in four species, the evolutionary studies of the transcripts were based
on FLC sequences and the sequences of COOLAIR were not released. Additionally, Araport11
(Cheng et al. 2017), an updated source for A. thaliana gene annotations, does not contain an-
notation for COOLAIR, although a NAT lncRNA (AT5G01675) much longer than COOLAIR
(6230nt vs the 750nt of COOLAIR) is annotated near the transcription start site of COOLAIR. A
lack of publicly available COOLAIR transcript sequences leaves researchers dependent on either
RNA sequencing data or FLC sequences for current evolutionary studies of this NAT lncRNA.
The annotation status of COOLAIR also corroborates our conclusions in Chapter 3 that plant
reference genomes are often missing lncRNAs.

HOX transcript anitisense RNA (HOTAIR), like COOLAIR, is a well studied lncRNA however
it is primarily found in mammalians. Expressed from the HoxC cluster, HOTAIR regulates HoxD
genes by Polycomb Repressive Complex 2 (PRC2) recruitment (Wu et al. 2013) and is involved
in limb development by skin fibroblasts in humans (Schorderet and Duboule 2011). The human
HOTAIR transcript is poorly conserved in mice, exemplified by a loss of two exons in the mouse
Hotair. In terms of functionality, the mouse Hotair does not seem to play essential roles in
development as observed in humans, and may have lost functionality during sequence divergence.
Evolutionary studies of Hotair in marsupials indicates that Hotair, and other lncRNAs found in
HOX clusters, are ancient and may have evolved over 160 million years ago before the divergence
of marsupials and eutherians (Yu et al. 2012). Additionally, phylogenetic analysis of HOTAIR in
10 mammalian species suggests that exons 1 and 6 of the six exon HOTAIR transcript evolve more
quickly in primates than other animals but all exons evolve more quickly than their surrounding
protein coding genes (He et al. 2011). Using a subset of available HOTAIR transcripts, it is
evident that the transcripts differ in molecular traits (Table 5.1). For example, transcript length
ranges from 325 to 2370nt and there exists differences in the numbers of exons. GC content,
however, remains relatively stable across the tested species, other than in mice with a lower than
average GC%.

Table 5.1: Molecular traits of HOTAIR

Species Transcript Info NCBI ID Length Num. of exons GC content (%) Citation
Human Variant 1 NR_047517 2370 6 48.6 Woo and Kingston (2007)
Mouse NR_047528 2222 2 41.5 He et al. (2011)
Tammar NA 325 3 46.2 Yu et al. (2012)
Dog NR_131937 619 5 47.4 NA
Chimpanzee NR_131936 2242 4 47.3 NA

Similarly to COOLAIR, Somarowthu et al. (2015) demonstrated that HOTAIR forms into an
intricate secondary structure that the authors believe may be involved in its binding function-
ality with PRC2, however, its structure was computationally predicted. Phylogenetic analysis
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using Hotair sequences from other mammalian species confirmed Hotair ’s predicted secondary
structure where putative protein binding domains contained either conserved or co-varying bases.
However, recent analysis by Rivas et al. (2017) argues that most structural analyses of lncRNAs,
like the analysis by Somarowthu et al. (2015), use invalid software that overly bias results towards
“compensatory base-pair substitutions” and ignores mutations that disrupt conserved structure.
Rivas et al. (2017) argue that Hotair transcripts do not show conserved structure, suggesting
that work on conservation of lncRNA secondary structure should consider using more appropri-
ate tools. Although a conservative approach to secondary structure prediction was taken, this
suggestion also includes the analysis of COOLAIR transcripts by Hawkes et al. (2016) as the
authors did not use a method similar to the one suggested by Rivas et al. (2017).

5.2.4 Are lncRNAs truly species-specific?

Understanding how lncRNAs evolve, in combination with functional characterization, will help
researchers determine how often lncRNAs are truly species-specific. For example, lncRNAs often
do not share sequence homology in two different species, but may have the same function or act
on the same target gene. Induced by Phosphate Starvation 1 (IPS1 ), an endogenous miRNA
sponge first identified in A. thaliana (Franco-Zorrilla et al. 2007), has also been identified in
tomato (Liu et al. 1997), barrel clover (Burleigh and Harrison 1997), soybean (Burleigh and Har-
rison 1999), and rice and grape (Franco-Zorrilla et al. 2007). These IPS1 homologs, however,
differ greatly in nucleotide sequence except for a small 23nt region of homology (Figure 5.1).
This small motif is the functional binding domain where IPS1 sequesters its target gene miR-
399. Thus, IPS1 -homologs all function as miR-399 sponges, but do not display overall sequence
conservation. Functional domains of other functional lncRNAs are often more obscure than
motifs with homology to target genes. For example, tapRNAs are mostly defined by positional
conservation and location within promoters and chromatin loops, and typically display limited
sequence homology (Amaral et al. 2018). Unlike protein-coding genes whose functions can be
predicted by sequence similarity due to shared evolutionary relationships (Pearson 2013), a lack
of sequence homology in lncRNAs prevents researchers from using protein-coding loci based func-
tional prediction protocols. A lack of sequence homology, however, does not necessarily indicate
species-specificity in lncRNAs. Future work should not only focus on identifying subclasses of
lncRNAs, but also to use criteria that define lncRNA subclasses to determine if any functionally
conserved lncRNAs exist between species.

5.2.5 Do extremophytes have fewer lncRNAs than the average plant?

In Chapter 4, we discuss the potential for plants with natural abiotic stress tolerance to have
fewer lncRNAs than the average we predicted in our tested plant species. In our study, we

95

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy – Caitlin Simopoulos; McMaster University – Department of Biology

Functional binding domain︷ ︸︸ ︷
Osat CCTCTACTAAGGTAGGGCAACTTGTATCCTTTGGCAATTATTCGGTGGAT 300
TPSI1 TTTTTGGTTGGAAAGGGCAACTTCTATCCTTTGGCATTTTGATGGAGGA. 279
Mt4 TTTCTCTTTGGAAAGGGCAACTTCGATCCTTTGGCATTTTT......... 269
IPS1 TCCCTCTAGAAATTGGGCAACTTCTATCCTTTGGCAAGCTT......... 264
IPS2_At4 TCCCTCGTT....TGGGCAACTTCGATCCTTTGGCAAGCTT......... 453

Figure 5.1: Sequence alignment of the 23nt functional domain in IPS1 in
rice, tomato, barrel clover and two in A. thaliana. Alignment does not show
entire IPS1 sequence and is instead localised to the functional domain which is
a target mimic for miR-399. Nucleotides which are found in at least 50% of the
species are shaded. Gaps are represented by “.”. Gene sequences are accessions
BU673244 (Osat, O. sativa), V34808 (TPSI1, S. lycopersicum), U76742 (Mt4,
Medicago truncatula), AF236376 (IPS1, A. thaliana), AY536062 (IPS2_At4,
A. thaliana). Sequences previously used for a sequence alignment by (Franco-
Zorrilla et al. 2007) were re-aligned using Muscle v3.8.425 (Edgar 2004). Se-
quence alignment is visualised using TEXshade (Beitz 2000).

observed 3% of all assembled transcripts from unstressed plants of E. salsugineum and B. hygro-
metrica as predicted lncRNAs, less than the average of 6.4% found in our tested plant species
(Table 3.2). It is interesting that lncRNA prediction numbers were not proportional to genome
size, as E. salsugineum’s genome is almost two-fold the size of the A. thaliana genome (241 Mb vs
135 Mb) and contained a smaller percentage of predicted lncRNAs (3.0% vs 4.3%; Table 3.2). In
Chapter 3, we proposed that “priming”, or constitutive expression of stress-associated genes due
to previous stress encounters, may indicate less of a need for lncRNAs in stress tolerant plants.
This hypothesis was suggested because stress-associated gene regulation is not as pervasive in
our tested extremophytes compared to stress-sensitive species. However, it is also possible that
extremophiles induce the expression of lncRNAs with molecular features that CREMA did not
include in its training datasets and therefore, could not predict. This hypothesis is unlikely as
CREMA was able to identify lncRNAs with molecular features that varied and did not follow
the estimated phylogenetic relationships in tested species (Figure 3.1; Table 3.2). Additionally,
over 90% of the top ranking lncRNAs predicted by CREMA with annotations were functionally
characterized as putative lncRNAs or lncRNA progenitors (Table 2.4). GC content of lncRNAs is
the only tested molecular trait that displayed consistently high phylogenetic signal. This finding
was corroborated by a previous study by Haerty and Ponting (2015) which identified evidence
of selection on GC content of predicted lncRNAs in animal species. It may be possible that
CREMA identifies lncRNAs with certain GC percentage ranges leaving lncRNAs with unusual
GC contents undetected. Thus, we also hypothesize that the genomes of E. salsugineum and
B. hygrometrica may contain lncRNAs with unexpected features which remain undetected and
are influencing the abnormally low number of detected lncRNAs in these species.

As lncRNA research moves forward, particularly with empirical validation and functional
characterisation, it is essential to continue updating the training datasets of CREMA and other
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machine learning-based tools. In addition, novel molecular features that distinguish lncRNAs
should be included in future iterations of prediction tools for more accurate results. Finally,
while CREMA was originally intended to be used even when reference genomes were unavailable,
genomic position in relation to protein coding genes, promoters or enhancer regions may be useful
in identifying additional lncRNAs as these features have been used in other lncRNA subclass
criteria (Amaral et al. 2018).

5.3 Machine learning in biology

In this thesis, we describe a machine learning classifier, CREMA, used for putative lncRNA
identification that was accurate even when trained on small datasets and few distinguishing
features (Chapter 2). We created this open-source computational tool to guide lncRNA validation
studies and included a prediction scoring system to help focus research on likely functional
lncRNA candidates. As discussed in Chapter 1, machine learning has been used extensively in
biological contexts, from secondary protein structure prediction (Wang et al. 2016) to DNA-
protein interaction identification (Kelley et al. 2016). LncRNA research was an excellent choice
for the application of an ensemble learning algorithm due to the heterogeneous nature of the non-
coding transcripts. In particular, a logistic regression meta-learner, or stacking generaliser, was
the most suitable ensemble algorithm tested for accurate prediction of lncRNAs from very diverse
species compared to other ensemble methods, such as majority vote or mean scores (Table 2.3).

5.3.1 Pitfalls of ensemble methods

Ensemble algorithms represent a machine learning framework that combines multiple models
into a single classifier and are typically more accurate than a single model (Baba et al. 2015).
Although ensemble machine learning methods are a popular choice for classification studies,
there are occasions when ensemble models are not the optimal choices for predictions (Wang
2008). As Baba et al. (2015) discuss, diversity of the individual base classifiers is essential for
accurate predictions and can be implemented by using different machine learning algorithms,
re-sampling of training data, or using different training datasets as used in the construction of
CREMA (Chapter 2). In addition, feature selection and parameter tuning are essential for the
success of the ensemble model, two approaches also used in the construction of CREMA. Wang
(2008) determined that “voting” and “average” ensemble models with fewer base classifiers (< 7
classifiers) may be accurate on training data, but do not typically perform well on test data.
Conversely, Baba et al. (2015) suggest that fewer base classifiers are preferred for unbalanced
training data, such as the data used to train CREMA. Nonetheless, ensemble methods are
especially useful when classifying heterogeneous data, such as lncRNAs.
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5.3.2 Stacking generalizers

Stacking refers to an ensemble-type algorithm that combines multiple models by training a meta-
learner on the outputs of said base models. Stacking is not as commonly used as other ensemble
model approaches, like boosting or bagging, due to extensive computational requirements. How-
ever, due to computational advancements, stacking has recently been used to solve complex
problems such as remote sensing of forest change (Healey et al. 2018), prediction of ski injuries
from metrological data (Delibašić et al. 2018), miRNA-mRNA target prediction (Van Peer et al.
2017), ageing biomarkers (Putin et al. 2016), and lncRNA subcellular localization (Cao et al.
2018). Although stacking can be an appropriate approach to classification problems not solv-
able by a single model, running multiple models requires more computational resources than a
single algorithm (Healey et al. 2018). In Chapter 2, we used a stacking approach to combine
custom models into a single classifier. It is also possible to train a stacking generalizer on the
outputs of multiple, independent, previously-published models as Healey et al. (2018) proposed
for predicting forest change. While including other lncRNA prediction tools would increase the
heterogeneity of our stacking learner, a benefit to this ensemble approach, combining independent
models would most likely require cloud-computing for software and data compatibility.

Machine learning models, including stacking classifiers, are also prone to a lack of inter-
pretability where researchers tend to choose models with the highest model evaluation scores
rather than “actionable insights” (Krause et al. 2016). For example, although CREMA is able
to predict lncRNAs with over 96% accuracy (Table 2.3), the complexity of the individual mod-
els that make up the stacking generalizer prevent easy interpretability of the model. In other
words, it is difficult to determine how a change in a feature, for example the Fickett score,
changes the final lncRNA prediction. This is a disadvantage to using “black box” machine learn-
ing approaches for lncRNA prediction, especially as researchers are currently lacking criteria for
lncRNA identification and cannot use machine learning tools to identify important distinguishing
features.

Currently, there are efforts to help researchers visualize and understand feature contributions
of “black box” machine learning models for increased interpretability (Krause et al. 2016). In
Chapter 2, we used recursive feature elimination to determine that TE-related features were not
informative in our training data or predictive models. While this approach does not quantify the
amount each feature contributed to lncRNA predictions, in our case, it allowed us to remove a
computationally intensive preprocessing step and to make inferences on our remaining training
dataset. Namely, our positive training dataset of empirically validated lncRNAs showed little
evidence of TE origin, contrary to the study by Kapusta et al. (2013). Krause et al. (2016) use
a different approach to increase model interpretability, where partial dependence plots can be
visualized for each feature demonstrating how changes in feature value affect a prediction score.
Their tool, Prospector, is a web-based interactive tool applicable for any Python-based machine
learning model that encourages data and feature exploration and increased interpretability of
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complex predictors. Future work should consider using tools like Prospector in concert with
lncRNA prediction tools to identify important molecular features of lncRNAs.

5.3.3 Deep learning

The affordability of sequencing has contributed to a large increase in molecular data, and an
estimate of one Zetta-basepairs (1021) of DNA will be sequenced by 2025 (Stephens et al. 2015).
Such large amounts of data require efficient computational processes for storage and analysis. In
particular, efficient computational algorithms are needed to identify patterns in largely hetero-
geneous data. As Zou et al. (2019) discuss, deep learning algorithms can offer novel approaches
to molecular analyses and “big data”. The term “deep learning” refers to a group of machine
learning algorithms commonly associated with artificial neural networks (Ching et al. 2018).
Artificial neural networks connect input and output layers (data to be classified and prediction
outcomes) to “hidden layers” consisting of features that are connected to other layers via edges.
Deep learning is complex and, depending on the algorithm, can allow for one hidden layer to
influence the arrangement of other layers for accurate predictions.

Deep learning displays a similar lack of interpretability as other machine learning models due
to the complexity of hidden layer construction during training. However, unlike other supervised
machine learning methods, deep learning does not always require feature selection and, therefore,
can require little domain knowledge for model construction. For example, deepTarget is com-
posed of deep recurrent neural network-based autoencoders that can predict miRNA precursors
and their corresponding target genes from nucleotide sequences (Lee et al. 2016a). The autoen-
coders, in the case of deepTarget, are first used in an unsupervised way to identify sequence
features essential to miRNA-mRNA target prediction. Autoencoders represent a classification of
neural networks, where the input and output are the same, thus the model can identify low-level
features of input data for the projection of output data. In our work, we could have used a deep
learning approach to feature selection in Chapter 2 for lncRNA prediction to identify seemingly
cryptic features that distinguish lncRNAs. Additionally, rather than manual feature selection
from the literature, as presented in Chapter 2, deep learning can be used in automatic feature
selection for use in a supervised model. A lncRNA subcellular localisation tool, lncLocator, also
uses autoencoders to identify features for lncRNA cellular localisation. The features identified
by autoencoders were then used in combination with manually curated features for classification
by a stacked generalizer approach (Cao et al. 2018). We could also use this method to improve
CREMA and use both autoencoder-found features and important features identified from previ-
ous research for lncRNA prediction. However, deep learning typically requires large amounts of
data, and may not be suitable for use with our small training datasets.
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5.4 Applying the drought tolerance strategies of Eutrema
salsugineum

In Chapter 4, we applied CREMA to RNA sequencing data of two E. salsugineum genotypes ex-
periencing a progressive drought treatment to better understand the molecular strategies behind
E. salsugineum’s drought tolerance. E. salsugineum is a plant species with genotypes native
to Canada. The natural environment of E. salsugineum’s Yukon ecotype is typically dry and
has been classified as semi-arid due to the minimal amount of precipitation the region receives,
making the Yukon genotype optimal for studying drought tolerance (Guevara et al. 2012). Al-
though the natural region of Yukon plants is typically dry, other areas of Canada are not immune
to abnormally dry conditions that subject plants to drought stress, the abiotic stress that con-
tributes the most to crop yield loss (Boyer 1982) . As of September 30, 2017, The Ministry of
Agriculture and Agri-Food Canada (2017) identified areas of moderate to exceptional drought in
areas of Western Canada (Figure 5.2). A combination of heat and drought stress contributed to
smaller than average yields in the 2017 growing season, particularly in canola plants, however soil
moisture reserves helped moderate devastating reductions in yield in the Southern prairies. As
climate change may contribute to reduced soil moisture (Schlaepfer et al. 2017), understanding
the molecular mechanisms for drought tolerance is imperative for future crop improvement and
ensuring future food security. Typically, transcription factors that regulate the expression of
multiple stress-associated genes are targets for crop improvement by genetic engineering. This
often requires an understanding of molecular signalling pathways and networks in combination
with physiological outcomes of changed gene expression. A systems biology approach to stress
tolerance is holistic and aims to piece together how the organism of interest responds to stres-
sors. In Chapter 4, we presented a systems biology-based analysis, a gene co-expression network
constructed from RNA sequencing data of our progressive drought treatment, to identify groups
of genes associated with a drought response.

5.4.1 Co-expression networks and stress

Large amounts of gene expression data, whether by microarray or RNA sequencing, allows for
more network-based approaches to understand stress signalling pathways. A review by Gehan et
al. (2015) suggests that network-based statistical approaches should be used to identify conserved
stress-associated pathways throughout tissues, plant genotypes and/or species. In Chapter 4 we
demonstrated that Yukon and Shandong E. salsugineum ecotypes have different gene expression
changes when exposed to a progressive drought treatment. When considering differential gene
expression analysis, of the 5730 unique DEGs identified in the experiment, only 799 were common
to both ecotypes. A gene co-expression network confirmed the observation that the ecotypes
respond differently to stress where clusters of co-expressed genes tended to correlate to either
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ecotype, but rarely both (Figure 4.4; Table S3.1). This gene co-expression network may help
researchers identify groups of genes associated with the unique drought response strategies of
each ecotype where, for example, Yukon display drought tolerance and Shandong plants drought
avoidance. In particular, regulatory loci like lncRNAs or transcription factors contained within
gene clusters of interest may play roles in gene expression regulation of genes within clusters. A
lack of overlap in differentially expressed lncRNAs in Yukon and Shandong plants experiencing
the progressive drought corroborates our suggestions that both ecotypes respond differently to
drought. Additionally, using functional enrichment, we were able to make functional predictions
for novel lncRNAs associated with drought treatment and ecotype. For example, a large cluster of
3415 co-expressed genes was positively correlated with both of Yukon plants’ drought responses.
This cluster was enriched in genes associated to a dehydration response, peptide transport, and
cellular lipid catabolic processes which are functions that have also been associated with drought
stress in A. thaliana (Gigon et al. 2004).

Co-expression network analysis can also be combined with metabolite profiling (Coneva et al.
2014). Coneva et al. (2014) analysed microarray data from rice plants undergoing four different
conditions of nitrogen availability. Functional enrichment of clusters identified by network anal-
ysis substantiated metabolite analysis. For example, Coneva et al. (2014) identified increased
purine metabolism compounds in plants transplanted from high to low nitrogen conditions using
metabolomics. Similarly, a gene expression cluster enriched with purine metabolism-related genes
was positively correlated to the same nitrogen condition, indicating that co-expression network
analysis is a valid approach to transcriptomic studies. Coneva et al. (2014) also discuss the merit
of targeting the master regulators of clusters of interest in future studies to better understand
the molecular mechanisms and regulation of genes deemed important by the analysis. Similarly,
in our work, the putative lncRNAs identified by CREMA that belong to drought associated
clusters should also be explored for their contributions to E. salsugineum’s drought tolerance.

5.4.2 Transgenic plants, crop improvement, and lncRNAs

As research on the molecular stress responses of plants continues, so does progress on applying
this information to crop improvement. In addition to traditional and marker assisted breeding
programs, genetic engineering by creating transgenic plants is a method that has been used
in crop improvement work (Ronald 2014). An internationally successful example of transgenic
crop improvement is the introduction of Bt crops that endogenously express insecticidal proteins
originally isolated from Bacillus thuringiensis (Bt) (Shelton et al. 2002). In a long-term study
describing the effects of Bt cotton in China, Lu et al. (2012) describe a reduction in pesticide
use and re-introduction of more environmentally-friendly biocontrol methods for insect control.
Additionally, beneficial insect generalist predator population numbers were not negatively im-
pacted by the introduction of Bt cotton. Thus Bt crops may enable pest-free and sustainable
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farming practices with little negative environmental impact. The success of Bt crops suggest
that transgenic crops are important to the advancement of stress-tolerant crops.

When we consider drought tolerance however, crop improvement is not straight forward. As
Nuccio et al. (2018) discuss, there are few drought tolerant biotechnology products available
to date. The progression from identifying a gene essential to drought tolerance to product de-
velopment is time consuming, and can cost up to tens of millions of dollars. Because a plant’s
response to abiotic stress is metabolically expensive, transgenes inserted into a plant’s genome are
most commonly transiently expressed using stress-inducible promoters. However, single-stress
responsive promoters are not as pervasive as those responsive to multiple stresses complicating
drought-induced transgene expression attempts (Jeong and Jung 2015). Finally, public opinion
on so-called “genetically modified organisms”, or GMOs, is not positive (Hundleby and Harwood
2018). The European Union has recently introduced strict regulations on genetic modification
and gene editing programs halting many crop improvement efforts in most of Europe. Nonethe-
less, lncRNAs may offer a new perspective to abiotic stress tolerance advancement through novel
gene targets.

Although not stress related, Wang et al. (2018d) were successful in overexpressing LRK
Antisense Intergenic RNA (LAIR) in O. sativa to increase crop yield. First identified as a yield-
QTL in an O. sativa genotype, LAIR is contained inside the LRK gene cluster and induces
the expression of other LRK genes. In the study, the authors transformed LAIR into rice and
observed a significant increase in yield and larger and more panicles per plant. Cited applications
of lncRNAs in crop improvement are limited, however, the study by Wang et al. (2018d) confirms
that lncRNAs can be candidate genes for crop improvement. While over-expressing lncRNAs that
influence drought tolerance may not improve the public’s perception of genetically engineered
crops, lncRNAs as gene targets for stress tolerance may solve problems stemming from a lack of
drought-specific promoters. LncRNAs are functional even in low levels, thus potentially enabling
researchers to improve stress tolerance without stress responsive promoters and instead with low
constitutive lncRNAs expression. When considering crop improvement by drought tolerance and
lncRNAs, there is a single empirically validated drought-associated lncRNA, drought induced
lncRNA (DRIR) (Qin et al. 2017). Qin et al. (2017) also were successful in overexpressing DRIR
in A. thaliana and observed a dosage dependant improvement in both drought and salt stress
tolerance. However, because DRIR does not display sequence homology with other plants, it
is unknown if this lncRNA is functional in other species, but its connection to abscisic acid
(ABA)-mediated response pathways may indicate conserved functionality that warrants further
research.

5.4.3 Importance of field studies in stress tolerance research

Stress experiments in growth cabinets give researchers complete control of experimental condi-
tions but cannot mimic the natural environments of stress tolerant species (Champigny et al.
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2013; Bechtold 2018). If crop improvement is the ultimate goal in drought tolerance research,
plants experiencing drought in their natural environment may offer experiments with more realis-
tic interpretations of drought tolerance. Additionally, constitutive expression of stress tolerance-
related genes can have negative, unintended effects on plant growth and yield (Nakashima et al.
2007; Yang et al. 2010), two characteristics essential for the commercial success of traits that can
only be fully tested during field trials.

Nuccio et al. (2018) suggest that a “disconnect” between experiments in controlled environ-
ments and field trials may be contributing to difficulties in bringing novel drought tolerant crop
plants to market. However, stress experiments in controlled environments may be essential for
understanding the molecular pathways induced by individual stressors. Our research group has
previously considered gene expression estimates of Yukon E. salsugineum plants sampled from
their natural environments alongside cabinet-grown plants (Guevara et al. 2012; Champigny et
al. 2013). Using RNA sequencing, Champigny et al. (2013) demonstrated that field-sampled
Yukon plants express genes related to photosynthesis, metabolism and stress differently com-
pared to cabinet-grown Yukon plants. It is not feasible to carry out experiments in the remote
Yukon locations where E. salsugineum is found, but our alternative was to devise a prolonged
progressive drought treatment presented in Chapter 4. The progressive drought, however, can-
not mirror the variety of other abiotic and biotic stresses plants experience daily when grown
in the field. Comparisons between field-grown plants with plants stressed in growth cabinets is
one approach for future research that could help identify pathways that are responsive to water
deficits independent of where the plants were stressed.

5.5 RNA sequencing and lncRNA research

As discussed in Chapter 3, the majority of lncRNAs are not found in transcriptome annotations
of plant species. Because of this discrepancy, lncRNA researchers cannot rely on transcriptome
annotations alone, thus requiring RNA sequencing for efficient research. While CREMA, pre-
sented in Chapter 2, is able to predict lncRNAs from assembled transcripts from RNA sequencing
data, the predictions rely on RNA sequencing quality. The leads to questions on how RNA se-
quencing parameters, such as library preparation protocols and sequencing technology, can affect
lncRNA prediction and gene expression estimates.

5.5.1 PolyA+ selection is sufficient for lncRNA detection

RNA sequencing typically involves a pre-processing step where rRNA is removed from samples
for more effective gene expression capture (Zhao et al. 2018a). This step is essential for accurate
expression estimates because rRNA is the most abundant class of RNA and can obscure the
expression results of lowly expressed genes. PolyA+ selection before sequencing is a cost-effective
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method for rRNA removal that results in transcriptomes enriched in polyadenylated transcripts.
Conversely, it is also possible to deplete the rRNA in samples of interest, which will remove most
rRNA transcripts but also retain other non-polyadenylated transcripts.

In Chapter 4, we used data from RNA sequencing protocols that used polyA+ selection
methods rather than rRNA- depletion. LncRNAs are often transcribed by RNApolII and post-
transcriptionally modified with 5′ caps and poly-A tails (Derrien et al. 2012). While we were able
to identify lncRNA expression using a polyA+ selection approach, our sequencing data limited
our lncRNA predictions to those transcripts that are polyadenylated. Zhao et al. (2018a) explored
the differences in gene expression estimation results obtained by polyA+ selection compared to
rRNA-depletion protocols. The authors found that a large fraction of transcript sequences from
rRNA-depleted libraries were immature, and potentially non-functional, suggesting that rRNA-
depleted libraries may lead to expression over-estimation. Although rRNA-depleted libraries
were able to capture additional lncRNAs, particularly those without polyA tails, the polyA+
libraries still contained many lncRNAs of interest. Due to a reduced cost and the fact that it
targets processed mRNA, polyA+ selection methods for RNA sequencing are an appropriate
choice for lncRNA research. However, future work should consider using both polyA+ selection
and rRNA-depletion protocols in combination to identify additional ncRNA transcripts.

5.5.2 Different library preparation protocols for single experiment

A challenge that may be encountered in large-scale gene expression studies are potential batch ef-
fects arising from, for example, multiple researchers, experiments completed on different days, or
different sequencing protocols. In Chapter 4, the RNA used in our progressive drought treatment
was extracted at two different times. The 16 original RNA sequencing libraries were sequenced
in 2013 with an additional 15 libraries sequenced in 2018 from tissue that had been frozen for five
years. A principal component analysis (PCA) completed on all 31 RNA sequencing libraries dis-
played batch effects that explained 0.9% of the variation in our data (Figure S3.1A). Wang et al.
(2018b) explored the effect of variations in RNA sequencing library protocols and detected little
expression differences in samples prepared using different methods. When Wang et al. (2018b)
specifically tested for gene expression changes at cells stored at -80°for three years, reminiscent
to our RNA sequencing experiment, the authors found only 90 genes differentially expressed
between the original fresh samples and the samples that were cryoperserved. However, Wang
et al. (2018b) observed a greater perturbance in lncRNA expression after cryopreservation com-
pared to protein-coding genes. Due to our the visual confirmation of batch effects using PCA
(Figure S3.1A), and the potential for gene expression differences due to cryopreservation rather
than biological variation, we accounted for batch effect using the DESeq2 R package (Love et al.
2014) during differential gene expression analysis. DESeq2 accounts for batch effect by adding
a “batch” variable to the generalised linear model in DEG identification removing the potential
effects of different library preparation protocols from differential gene expression analysis.
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5.6 Proposed studies

5.6.1 Prediction of lncRNAs induced by other abiotic stresses in the
Yukon E. salsugineum genotype

In Chapter 4 we used CREMA in combination with RNA sequencing data to identify lncR-
NAs induced in two E. salsugineum genotypes during a progressive drought. Previous work has
shown that the Yukon and Shandong ecotypes of E. salsugineum display unique molecular and
physiological strategies to drought tolerance (MacLeod et al. 2014). Additionally, MacLeod et al.
(2014) identified that Yukon plants experience “priming” and were more prepared than Shandong
plants to tolerate a subsequent water stress while maintaining growth. Drought, however, is not
the only abiotic stress where E. salsugineum displays innate abiotic stress tolerance. E. salsug-
ineum is able to tolerate cold (Wong et al. 2005), salt stress (Gong et al. 2005) and nutritional
deficiencies (Velasco et al. 2016) demonstrating characteristics of an extremophile (Kazachkova
et al. 2018). I propose that transcripts not currently annotated in the E. salsugineum reference
annotation are likely expressed in response to other abiotic stresses and may be contributing
to the Yukon ecotype’s superior stress tolerance. I also hypothesize that many of these “novel
transcripts” will be predicted as lncRNAs, similar to the results of Chapter 4 that indicated 42%
of novel transcripts were predicted as lncRNAs.

Our research group has RNA sequencing data from two unique nutrient deprivation studies.
The first experiment consists of sequencing data from both leaves and roots of Yukon plants
where phosphate was withheld (0mM and 2.5mM added phosphate). In the second experiment,
Yukon plants were exposed to a combination of both sulfur and phosphate deprivation (0mM or
2.5mM added phosphate, and 0mM or 5000ppm calcium sulfate). The bioinformatics pipeline
for transcript assembly and lncRNA prediction by CREMA that was presented in Chapter 4 can
be applied to the previously described RNA sequencing libraries. By estimating the expression
of all detected transcripts in Yukon plants undergoing multiple stresses, it will be possible to
identify lncRNAs associated with a single stress rather than a general stress response. Using a
single network created by WGCNA, clusters of genes with expression patterns associated with
certain stresses or tissues can be identified. Alternatively, networks for each experiment can be
constructed, and conserved or differential clusters can be identified using software such as MODA
(Li et al. 2016a).

5.6.2 Yukon genome assembly

The reference genome and corresponding annotation for E. salsugineum that is currently available
was compiled using sequence data from the Shandong ecotype (Yang et al. 2013). However,
we found over 60,000 single nucleotide polymorphisms (SNPs) in Yukon plants compared to
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the reference genome in expressed regions using RNA sequencing data. This analysis did not
consider InDels or mutations within non-coding regions which may be contributing to even
more genomic variation between the two ecotypes. Additionally, in Chapter 4 we identified
that the expression of 1023 and 1268 transcripts were unique to Yukon and Shandong ecotypes
respectively. Of those 2291 transcripts, 169 and 237 were lncRNAs detected only in Yukon
or Shandong plants. Ecotype-specific expression and known mutations in coding-regions may
indicate that using Shandong’s genome sequence in Yukon-focused studies may be leading to
results biased by the Shandong ecotype.

I propose that an improved Yukon genome assembly should be completed and will be beneficial
to any future experiments, either computational or empirical, on E. salsugineum plants of the
Yukon ecotype. This could be done using available genomic data from an in-house, paired-
end Illumina sequencing run. A genome-guided approach to expanding and connecting the 639
scaffolds of the E. salsugineum genome assembled by Yang et al. (2013) using our DNA sequencing
reads may be an appropriate choice for the Yukon genome assembly. For example, By Adaptive
Unique Mapping (BAUM) is a software that has been recently released to improve genome
assemblies using an iterative approach (Wang et al. 2018a). Using an overlap-layout-consensus
method, rather than a k-mer based assembly method, BAUM is less prone to assembly errors
due to repetitive sequences. The iterative approach of BAUM also reduces the computational
load of a typical overlap-layout-consensus assembly method. Guided by the O. sativa genome,
BAUM has previously been used to assemble the Oryza longistaminata genome, a demonstration
of success with plant genomes.

Conversely, a de novo genome assembly may be preferred, especially to identify previously
un-sequenced genomic regions. Single molecule sequencing reads produced by technology from
Pacific BioSciences (Eid et al. 2009) or Oxford Nanopore (Jain et al. 2015) may be more useful
than short reads for a de novo genome assembly. It is difficult, however, to assemble single
molecule reads due to a large computational requirement. A recent tool, MECAT, aims to
reduce the computational need by single molecule de novo aligners by using pseudoalignment
methods (Xiao et al. 2017).

5.6.3 The evolutionary rate of lncRNAs in Brassicaceae species

Sequence homology and secondary structure conservation of COOLAIR has been studied in
multiple Brassicaceae species (Castaings et al. 2014; Hawkes et al. 2016). Similarly, the conserved
and functional domain of IPS1 and Induced by Phosphate Starvation 2 (IPS2 ) has been identified
in A. thaliana, tomato, barrel clover and alfalfa. However, the rate at which both lncRNAs evolve
has not yet been explored. Previous research on the evolutionary relationships of animal-derived
lncRNAs has relied on sequence similarity for homolog identification (Necsulea et al. 2014), a
method which may exclude lncRNA homologs with very fast evolution and bias results to a slower
evolutionary rate than what is true. For example, lncRNAs such as IPS1 and its homologs would
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have been missed in this analysis as the genes only contain a small 23nt region of homology. It is
accepted that lncRNAs evolve more quickly than protein coding genes (Ulitsky 2016), however
the rate at which they evolve has not been fully explored in plants. Due to the lack of validated
lncRNAs in plants, large scale studies that quantify evolutionary rates of all predicted lncRNAs
are difficult. Thus, I propose a study focused on known, functional lncRNAs that vary in the
levels of sequence conservation in Brassica species. The study should quantify the evolutionary
rate of both exons and introns, if applicable, of COOLAIR and IPS1/IPS2 in A. thaliana,
A. lyrata, C. rubella, A. alpina, E. salsugineum and B. rapa, mirroring the species chosen by
Hawkes et al. (2016) in their study that identified conserved secondary structures of COOLAIR.
A similar analysis should be completed on the target genes of each lncRNA as FLC has been
proposed a target of COOLAIR and miR-399 is a known target of IPS1 and IPS2 . This work
will quantify the evolutionary rates of known, functional lncRNAs and will compare these rates
to conserved target genes.

5.7 Conclusion

In this work we presented a novel lncRNA prediction tool that addresses the gaps in knowledge
between plant- and animal-derived lncRNAs. The accurate ensemble machine learning tool,
CREMA, was then applied to RNA sequencing data of evolutionarily diverse plant species to
identify conserved molecular traits in lncRNAs. The phylogenetic signal analysis supported pre-
vious research that suggested an unclear evolution of lncRNAs as signal estimates of molecular
traits other than GC content were inconsistent or not significant. However, phylogenetic sig-
nal estimates were different in lncRNAs compared to all other assembled transcripts indicating
that lncRNAs follow different evolutionary patterns than most transcripts. This analysis also
highlighted a lack of lncRNAs contained in the annotations of plant genomes and cautioned
researchers to not rely on genome annotations for lncRNA research. Finally, we used RNA se-
quencing to identify the molecular mechanisms behind the drought tolerance strategies of two
E. salsugineum ecotypes. Differential gene expression analysis revealed little overlap between the
gene regulation responses of the two genotypes. We also predicted lncRNAs from RNA sequenc-
ing data and identified only 14 lncRNAs differentially expressed in both ecotypes. Co-expression
network analysis provides evidence that both ecotypes invoke unique molecular pathways when
responding to drought treatment. Functional enrichment of clusters identified by co-expression
network analysis was used to make functional predictions for lncRNAs expressed during drought.

Our novel lncRNA prediction tool contributes to lncRNA research by offering a tool specifi-
cally created to identify functional lncRNAs, and has been tested on multiple plant species. The
tool can be applied to transcriptome data and can be used on species without reference genomes
with the goal of being used in concert with gene expression studies to focus on empirical valida-
tion of lncRNAs. Our phylogenetic analysis of lncRNA molecular traits used a novel approach
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to evolutionary studies of lncRNAs, and corroborated the uncertainty of an evolutionary path
given by nucleotide sequence-based methods. Finally, by identifying different lncRNAs expressed
in Yukon and Shandong E. salsugineum ecotypes, we have identified potential gene expression
regulators that may be contributing to drought tolerance and avoidance strategies. E. salsug-
ineum’s drought-induced lncRNAs offer potential gene leads for improved drought tolerance of
crops, and may be suitable targets without an accompanying need for single-stress associated
promoters.
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Supplemental Figure S1.1: Cumulative proportions of lncRNA scores
in A. thaliana, E. salsuginiem, and O. sativa found using the gradi-
ent boosting stacking generalizer. The figure depicts the proportions of
lncRNAs that are predicted as a lncRNA equal to or less than a particular
score.
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Supplemental Table S1.1: The distribution of lncRNA prediction scores in
A. thaliana E. salsugineum, and O .sativa

Score A. thaliana E. salsugineum O. sativa
0.50-0.55 0 0 0
0.55-0.60 51 11 72
0.60-0.65 1 1 2
0.65-0.70 138 71 89
0.70-0.75 73 20 146
0.75-0.80 11 3 12
0.80-0.85 14 7 30
0.85-0.90 156 5 354
0.90+ 866 80 151
Total 1310 80 148

Supplemental Table S1.2: Ensemble predictor has no preference for coding
or noncoding sequences.

CPAT prediction:
Coding Noncoding

lncRNA lncRNA lncRNA lncRNA
Stacking prediction positive negative positive negative
Species
A. thaliana 243 37279 1067 2314
O. sativa 133 49325 723 1762
E. salsugineum 44 28079 154 1161

Transcripts were identified as either protein coding or non-coding using the
CPAT software. Coding probability cutoffs were calculated by intersect of sen-
sitivity and specificity via 10-fold cross validation. A coding probability cut off
of 0.38 was used for A. thaliana and 0.52 for both O. sativa and E. salsugineum.
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Supplemental Figure S2.1: Post-hoc pairwise t-test results of uncorrected
mean comparisons. The trait value differences between all other transcripts and
lncRNAs are plotted. Pairs without significant mean differences are indicated
with corresponding letters.
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Supplemental Figure S2.2: Phylogenetic tree visualizing the calculated
branch lengths used in phylogenetic signal detection. Branch lengths were es-
timated from a MAFFT v7.205 alignment of rps16, atp2, 18s, 26s and SMC1
(FASTA file of sequences available in File S3) using the dnaml program in
PHYLIP. The tree topology reported by the Amborella Genome Project (2013)
was used. Branch lengths representing site changes were converted to relative
age of branches using the R package ape.
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Supplemental Table S3.1: Correlation of select cluster eigengenes to geno-
type and drought treatment

Cluster Number of genes Correlation to Condition
DEGs Total SD1 SD2 SWW1 SWW2 YD1 YD2 YWW1 YWW2

lightcyan1 121 (89%) 136 ns ns ns 0.56 ns -0.45 ns ns
lightyellow 184 (76%) 241 ns -0.36 ns 0.53 ns ns ns ns
purple 393 (75%) 525 ns ns ns 0.43 ns ns ns ns
pink 444 (66%) 677 ns ns ns ns ns -0.43 0.43 ns
blue 2008 (61%) 3311 ns ns ns 0.66 ns ns ns ns
darkslateblue 63 (55%) 115 ns -0.36 ns ns ns ns 0.70 ns
turquoise 1756 (51%) 3415 ns ns ns ns 0.57 0.51 ns ns
coral1 42 (51%) 83 ns 0.48 ns ns ns 0.40 ns ns

Clusters for GO term enrichment were chosen if at least 50% of genes in each
cluster were identified as a DEG at one progressive drought condition progres-
sion. Only significant correlations are displayed (p<0.05 after FDR adjust-
ment). NS indicates that the correlation was not significant.
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Supplemental Figure S3.1: PCA biplots used to identify possible batch effect
caused by different cDNA library preparation protocols. A. PC2 and PC4 biplot
that shows clustering of libraries sequenced at different times and prepared using
different library preparation protocols. cDNA libraries prepared by protocol A
are shown in circles (Shandong) and squares (Yukon). cDNA libraries prepared
by protocol B are shown in upwards (Shandong) and downwards (Yukon) facing
triangles. Library preparation A can be found clustering positively on PC3,
while library preparation B is negatively loading on PC3. The clustering was
used for batch effect detection. Batch effect was considered in the differentially
expressed gene (DEG) analysis using DESeq2. B. PC2 and PC3 biplot shows
overlapping technical replicates of resequenced cDNA libraries YD2.1 and SD2.2
suggesting that it is library preparation methods, not sequencing technologies,
that are causing a putative batch effect.
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Supplemental Figure S3.2: Log2 fold change of the dehydrins described by
MacLeod et al. (2014). All log2 estimates are relative to WW1, or control,
conditions for each ecotype. Significant fold changes are described by a red
asterisk (*). Error bars represent the standard error of the log2 fold change.
Log2 fold change results of RNASeq data from all 31 libraries were identified
using DESeq2 and an FDR adjust p-value threshold of 0.05. Log2 fold change
results of RT qPCR data of three biological replicates from each condition were
identified using a t-test and an FDR adjusted p-value threshold of 0.05
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Supplemental Figure S3.3: Screeplot describing proportion of variances ex-
plained by each principal component of the PCA completed on the estimated
expression abundances of E. salsugineum ecotypes subjected to a progressive
drought. Expression estimates were calculated from RNASeq data.
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